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AEROCE – Atmosphere/Ocean Chemistry Experiment 
 



xvi 
 

AEROCOM – Aerosol Comparisons between Observations and Models (a global aerosol 
model intercomparison project) 

AERONET – NASA Aerosol Robotic Network 
AERONOX – a soil emissions model 
AF – North Africa  
AFstY – accumulated stomatal ozone flux  
AHSMOG – Adventist Health Study on the Health Effects of Smog 
AIM – Asian Pacific Integrated Model 
AIRS – Atmospheric Infrared Sounder 
ALTO – Airborne Lidar for Tropospheric Ozone 
AMS –Aerosol Mass Spectrometer 
AOD – Aerosol Optical Depth 
AOTxx – Accumulated Ozone Concentration over a Threshold over a Growing Season, where 

xx is the threshold concentration in ppb 
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Aura – a NASA polar orbiting satellite 
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C4 – an alternative photosynthetic pathway 
CALIOP – Cloud-Aerosol Lidar with Orthoganol Polarisation 
CALIPSO – Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 
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CAPMoN – Canadian Air and Precipitation Monitoring Network 
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CASTNET – Clean Air Status and Trends Network  
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CCC – Chemical Coordinating Centre  
CCN – Cloud Condensation Nuclei  
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CHN-NCP – North China Plain 
CHN-NE – NE China  
CHN-SE – SE China  
CHN-YRB – Yangtze River Basin  
CIESIN – Center for International Earth Science Information Network 
CIFEX – Cloud Indirect Forcing Experiment 
CIRES – Cooperative Institute for Research in Environmental Science  
CLE – Current Legislation Scenario 
CLRTAP – Convention on Long Range Transboundary Air Pollution 
CMAQ – Community Multiscale Air Quality Model 
CMAQ DDM – Community Multiscale Air Quality Model with Direct Decoupled Method 
CMDL – Climate Modeling and Diagnostics Laboratory 
CMIP5 – Climate Model Intercomparison Program #5 
CNR – The National Research Council, Italy 
CNRS  – Centre  National de la Recherche Scientifique, France 
CONUS – Continental United States 
CORINAIR – Coordination of Information on the Environment – Air 
COSAM – Comparison of Large Scale Atmospheric Sulphate Aerosol Models  
CRF – Concentration-Response Function  
CTM – Chemical Transport Model 
CUNY – The City University of New York 
DA – Dry Airstream 
DJF – December, January, February  
DLR – Deutsches Zentrum fuer Luft  
DMS – Dimethylsulfide 
DU – Dobson Units  
EA – East Asia 
EANET – Acid Deposition Monitoring Network in East Asia 
EARLINET – European Aerosol Research Lidar Network 
EC – Elemental Carbon 
ECB – East Siberia  
ECHAM5-HAMMOZ – an atmospheric model (ECHAM), with aerosol (HAM) and 

tropospheric chemistry (MOZ) modules 
ECMWF – European Centre for Medium Range Weather Forecasting 
EDGAR – Emissions Database for Global Atmospheric Research 
EDGAR-HYDE – An extension of the EDGAR data set back to 1890 
EEA – European Environment Agency 
EMEP – Cooperative Programme for Monitoring and Evaluation of the Long-range 

Transmission of Air Pollutants in Europe 
ENSO – El Niño Southern Oscillation 
ENVISAT – European Space Agency Environmental Satellite 
EOTC – European Open Top Chamber  
ES – Event Simulations  
ETEX – European Tracer Experiment 
EU – European Union 
FC – Future Climate  
FE – Future Emissions  
FLEXPART – a Lagrangian particle dispersion model 
FO3 – Calculated Stomatal Flux into the Plant 
FRSGC – Frontier Research System for Global Change, Japan 
Fs – Maximum Forcing at the Surface  
FSU – Former Soviet Union  
FT – Free Troposphere  
GACP – Global Aerosol Climatology Project  
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GAINS – Greenhouse gas and Air pollution Interactions and Synergies 
GAM – Generalized Additive Model  
GASP – Aerosol/Smoke Product from the GOES EAST satellite 
GAW – Global Atmospheric Watch Programme (within WMO) 
GCAM – Global Change Assessment Model 
GCM – General Circulation Model 
GEMAQ – Global Environmental Multiscale Air Quality Model 
GEMS – Global and Regional Earth-system (Atmosphere) Monitoring using Satellite and In-

situ Data 
GEO – Geostationary Orbit 
GEOS-CHEM – A global 3-D atmospheric composition model driven by data from the 

Goddard Earth Observing System 
GFDL – Geophysical Fluid Dynamics Laboratory, NOAA, U.S. 
GFED – Global Fire Emissions Database 
GHG – Greenhouse Gases 
GICC – Gestion et Impacts du Changement Climatique 
GISS – Goddard Institute for Space Studies, NASA, U.S. 
GISS-PUCCINI – GISS model for Physical Understanding of Composition-Climate 

Interactions and Impacts 
GMI – Global Modeling Initiative 
GOCART – Goddard Global Ozone Chemistry Aerosol Radiation Transport 
GOES-EAST – Geostationary Operational Environmental Satellite, Eastern Continental 

United States 
GOME – Global Ozone Monitoring Experiment 
GPP – Gross Primary Productivity 
GPWv3 – Gridded Population of the World, Version 3  
GRACE – Gravity Recovery and Climate Experiment 
GRAPE – Global Retrieval of ATSR Cloud Parameters and Evaluation  
GWEM – Global Wildland Fire Emission Model  
GWP – Global Warming Potential  
GWP100 – Global Warming Potential Over 100 Years 
HadAM3 – U.K. Meteorological Office Hadley Centre Earth Systems Climate Model 
HadGEM – U.K. Meteorological Office Hadley Centre Global Environmental Model 
HEI – Health Effects Institute  
hPa – hectopascal 
HPO – Mt. Happo, Japan 
HTAP – Hemispheric Transport of Air Pollution 
i – Index 
IAGOS – Integration of routine Aircraft measurements into a Global Observing System 
IASI – Infrared Atmospheric Sounding Interferometer  
ICARTT – International Consortium for Atmospheric Research on Transport and 

Transformation 
ICP – International Cooperative Programme 
ICT – Intercontinental Transport 
IDC+ – Other South East Asia  
IEA – International Energy Agency 
IGAC – International Global Atmospheric Chemistry 
IGAC Lagrangian 2K4 – First Inter-Continental Psuedo-Lagrangian Experiment  
IIASA – International Institute for Applied Systems Analysis 
IMAGE – Integrated Model to Assess the Global Environment 
IMPACT – Integrated Massively Parallel Atmospheric Chemical Transport Model 
IMPROVE – Interagency Monitoring of Protected Visual Environments 
IN – Indian Subcontinent  
INCA – Interaction of Chemistry and Aerosol Model 
INDOEX – Indian Ocean Experiment  
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INTEX – Intercontinental Chemical Transport Experiment 
IPCC – Intergovernmental Panel on Climate Change 
IPCC AR4 – Intergovernmental Panel on Climate Change Fourth Assessment Report  
IPCC AR5 – Intergovernmental Panel on Climate Change Fifth Assessment Report  
IPCC SRES – IPCC Special Report on Emission Scenarios, 2000 
IPs – Influence Potentials  
ITCT – Intercontinental Transport and Chemical Transformation Experiment 
ITCT-2K2 – Intercontinental Transport and Chemical Transformation 2002 Experiment 
ITOP – Intercontinental Transport of Ozone and Precursors 
ITZ – Intertropical Convergence Zone 
JGCRI – Joint Global Change Research Institute  
JGSEE – The Joint Graduate School of Energy and Environment 
JJA – June, July, August 
JOSIE – Juelich Ozone Sonde Intercomparison Experiment  
JPN – Japan  
JPN-E+W – Korea and Mainland Japan  
JRC – Joint Research Centre 
K – Kelvin 
km – kilometers 
KOR – Korea  
L – Low 
LAM – Latin America and Caribbean  
LATMOS-IPSL – Laboratoire Atmospheres, Milieux et Observations Spatiales-Pierre 

Simon Laplace Institute 
LDMz – Laboratoire de Meteorologie Dynamique Zoom model 
LEO – Low Earth Orbit  
LLGE – Laboratoire de Glaciologie et  Géophysique de l'Environnement 
LLGHGs – Long-lived Greenhouse Gases  
LLNL – Lawrence Livermore National Lab, U.S. 
LMD-IPSL – Laboratoire de Météorologie Dynamique-Pierre Simon Laplace Institute 
LPDM – Lagrangian Particle Dispersion Models 
LRT – Long-range Transboundary 
LRTAP – Long-range Transboundary Air Pollution 
LS – Lower Stratosphere   
LWC – Liquid Water Content  
m – meters 
M12 – Daylight (12 hours) Growing Season Average  
M7 – Daylight (7 hours) Growing Season Average  
MACC – Monitoring Atmospheric Composition and Climate 
MAF – Middle East plus Africa 
MAM – March, April, May  
MARM – Ministry of the Environment, Rural and Marine Media of Spain 
MBO – Mt. Bachelor Observatory  
MDA8 O3 – Maximum Daily 8-h Average Ozone  
ME – Middle East 
ME00 – 3 Model-mean for 2000s Climate  
ME90 – 3 Model-mean for 2090s Climate 
MED – Median  
MEGAN – Model of Emissions of Gases and Aerosols from Nature  
MESSAGE – Model for Energy Supply Strategy Alternatives and their General 

Environmental Impact 
MetOP – a European polar-orbiting meteorological satellite 
MFR – Maximum Feasible Reduction scenario 
mg – milligrams 
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MILAGRO – Megacity Initiative: Local and Global Research Observations 
MISR –  Multiangle Imaging Spectro-Radiometer 
MLS – Microwave Limb Sounder 
MMO1 – Multi-model Mean and Ranges with 2001 Climate  
MOCAGE – Model of Large Scale Atmospheric Chemistry, Meteo-France 
MODIS – Moderate Resolution Imaging Spectroradiometer 
MOPITT – Measurements of Pollution in the Troposphere 
MOZAIC – Measurement of Ozone on Airbus In-service Aircraft 
MOZART – Model of Ozone and Related Tracers 
MOZGN – MOZART modified by GFDL and NCAR 
MSC-E – Meteorological Synthesizing Centre-East 
MSC-W – Meteorological Synthesizing Centre-West 
Mx – Combination of M7 and M12  
NA – North America 
NAAQS – National Ambient Air Quality Standards 
NAO – North Atlantic Oscillation 
NAPAP – National Acid Precipitation Assessment Program, U.S. 
NARE – North Atlantic Regional Experiment   
NASA – National Aeronautics and Space Administration, U.S. 
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NCAR – National Center for Atmospheric Research, U.S. 
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NCO-P – Nepal Climate Observatory Pyramid 
NE – Eurasian Boreal  
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NOAA – National Oceanic and Atmospheric Administration, U.S. 
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NRC – National Research Council 
NW – North American Boreal  
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OECD – Organization for Economic Co-operation and Development 
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OHP – Observatoire de Haute Provence  
OMI – Ozone Monitoring Instrument 
PAN – Peroxyacetyl Nitrate 
PAPA – Public Health and Air Pollution in Asia 
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PBL – Planetary Boundary Layer 
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PSD Class I – Class I Areas under the Prevention of Significant Deterioration Rule  
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QRT – Quartile  
RAIR – Relative Annual Intercontinental Response  
RAPIDC – Regional Air Pollution in Developing Countries 
RCP – Representative Concentration Pathway 
REAS – Regional Emissions Inventory in Asia 
REF – Reference Scenario 
RETRO – Re-analysis of the tropospheric chemical composition project 
RF – Radiative Forcing  
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ROSE – Rural Oxidants in the Southern Environment study  
RoTAP – Review of Transboundary Air Pollution 
ROW – Rest of World 
S/R – Source-Receptor 
SA – Source Attribution 
SA – South Asia 
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Chartography/Chemistry 
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SeaWiFS – Sea-viewing Wide Field of View Sensor 
SEI – Stockholm Environmental Institute  
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SLCFs – Short-Lived Climate Forcers  
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SST – Sea Surface Temperatures 
STILT – Stochastic Time-Inverted Lagrangian Transport model 
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SW DRF – Short-Wave Direct Radiative Forcing  
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Preface 
In December 2004, in recognition of an increasing body of scientific evidence suggesting 

the potential importance of intercontinental flows of air pollutants, the Convention on Long-
range Transboundary Air Pollution (LRTAP Convention) created the Task Force on 
Hemispheric Transport of Air Pollution (TF HTAP). Under the leadership of the European 
Union and the United States, the TF HTAP was charged with improving the understanding of 
the intercontinental transport of air pollutants across the Northern Hemisphere for 
consideration by the Convention. Parties to the Convention were encouraged to designate 
experts to participate, and the task force chairs were encouraged to invite relevant experts to 
participate from countries outside the Convention.  

Since its first meeting in June 2005, the TF HTAP has organized a series of projects and 
collaborative experiments designed to advance the state-of-science related to the 
intercontinental transport of ozone (O3), particulate matter (PM), mercury (Hg), and persistent 
organic pollutants (POPs). It has also held a series of 15 meetings or workshops convened in a 
variety of locations in North America, Europe, and Asia, which have been attended by more 
than 700 individual experts from more than 38 countries. The TF HTAP leveraged its 
resources by coordinating its meetings with those of other task forces and centres under the 
convention as well as international organisations and initiatives such as the World 
Meteorological Organization, the United Nations Environment Programme’s Chemicals 
Programme and Regional Centres, the International Geosphere-Biosphere Program-World 
Climate Research Program’s Atmospheric Chemistry and Climate (AC&C) Initiative, and the 
Global Atmospheric Pollution Forum.  

In 2007, drawing upon some of the preliminary results of the work program, the TF HTAP 
developed a first assessment of the intercontinental transport of ozone and particulate matter 
to inform the LRTAP Convention’s review of the 1999 Gothenburg Protocol (UNECE Air 
Pollution Series No. 16). 

The current 2010 assessment consists of 5 volumes. The first three volumes are technical 
assessments of the state-of-science with respect to intercontinental transport of ozone and 
particulate matter (Part A, this volume), mercury (Part B), and persistent organic pollutants 
(Part C). The fourth volume (Part D) is a synthesis of the main findings and recommendations 
of Parts A, B, and C organized around a series of policy-relevant questions that were 
identified at the TF HTAP’s first meeting and, with some minor revision along the way, have 
guided the TF HTAP’s work. The fifth volume of the assessment is the TF HTAP Chairs’ 
report to the LRTAP Convention, which serves as an Executive Summary.  

The objective of HTAP 2010 is not limited to informing the LRTAP Convention but, in a 
wider context, to provide data and information to national governments and international 
organizations on issues of long-range and intercontinental transport of air pollution and to 
serve as a basis for future cooperative research and policy action.  

HTAP 2010 was made possible by the commitment and voluntary contributions of a large 
network of experts in academia, government agencies and international organizations. We 
would like to express our most sincere gratitude to all the contributing experts and in 
particular to the Editors and Chapter Lead Authors of the assessment, who undertook a 
coordinating role and guided the assessment to its finalisation. 

We would also like to thank the other task forces and centres under the LRTAP Convention 
as well as the staff of the Convention secretariat and EC/R Inc., who supported our work and 
the production of the report.  

 

André Zuber and Terry Keating 
Co-chairs of the Task Force on Hemispheric Transport of Air Pollution 
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Chapter 2 
Observational Evidence and Capabilities Related to Intercontinental 

Transport of Ozone and Particulate Matter 
Lead Authors: Kathy Law, David Parrish 

Co-authors: Steve Arnold, Elton Chan, Gao Chen, Owen Cooper, Dick Derwent, David 
Edwards, Dan Jaffe, Dorothy Koch, Paolo Laj, Randall Martin, John Methven, Paul Monks, 
Stuart Penkett, Joe Prospero, Patricia Quinn, Lorraine Remer, Johannes Staehelin, Rich 
Scheffe, Akinori Takami, Hiroshi Tanimoto, Valerie Thouret, Solene Turquety, Christian 
Zdanowicz, Jerry Ziemke 

2.1. Introduction  
For several decades it has been possible to measure particulate matter, ozone (O3) and their 

important precursors at even the lowest concentrations found in the most remote regions of the 
Northern Hemisphere. Even the earliest measurements found that long-range transport exerts a strong 
influence on these observed concentrations. For example, dust of Asian origin was observed 
throughout the North Pacific region [Duce et al., 1980; Prospero, 1979] and studies at the west coast 
of North America in 1985 identified the influence of Asian emissions on the sulphur budget [Andreae 
et al., 1988] and on the concentrations of O3, hydrocarbons, and peroxyacetyl nitrate (PAN) [Parrish 
et al., 1992]. It has also been clear since at least the 1980s that increasing anthropogenic emissions of 
NOx since preindustrial times have led to pronounced ozone concentration increases throughout the 
Northern Hemisphere [e.g., Crutzen, 1988].  

This chapter aims to document observational evidence for the long-range transport of 
pollutants between continents. The focus is on the transport of O3 and particulate matter (PM) from 
major emission regions of the Northern Hemisphere and their impact on observed concentrations in 
downwind receptor regions. This includes trans-Pacific and trans-Atlantic transport as well as 
transport out of Europe and transport to the Arctic. O3 and a certain fraction of PM such as sulphate 
are secondary pollutants produced from precursor emissions such as carbon monoxide (CO), NOx, and 
sulphur dioxide (SO2) (see Chapter 1). They are produced close to source regions, especially in the 
case of PM, before being transported downwind. During transport pollutant concentrations will 
change due to photochemical production from transported precursors, photochemical and physical 
loss processes (dry, wet deposition, microphysics) and mixing with air of different composition. Thus, 
there is no point-to-point relationship between source and receptor. Air masses arriving at a 
downwind location will be the result of complex air mass histories, and will include components 
related to emissions from various source regions. 

The signature of long-range pollutant transport in downwind measurements depends on the 
lifetime of the particular pollutant and the extent to which a pollutant plume mixes with other air 
masses. For PM and other pollutants with short lifetimes, on the order of a few days, long-range 
transport between continents is observed in the form of discrete plumes with pollutant concentrations 
significantly greater than those usually encountered. Often such a plume can be directly attributed to a 
particular upwind source. In favourable cases particular plumes can be tracked in satellite data over 
periods of several days.  

For O3 and CO, pollutants with lifetimes of weeks to months in the free troposphere, mixing 
of air masses with different histories plays a dominant role in defining the spectrum of concentrations 
found in any region of the troposphere. Photochemical production can also be important for O3. 
Mixing can significantly modify discrete plume signatures. Figure 2.1 shows the concentration 
distributions of CO and O3 derived from 176 separate ascents and descents of MOZAIC aircraft into 
two North American west coast cities during the summers of 2003-2006. These distributions 
exemplify the plume signatures that result after trans-Pacific transport. At each city the CO 
distribution is well defined as a log-normal distribution of mixing ratios, with only a very few (≈ 1 - 2 
% of the total data) higher concentration plumes distinguishable from this general distribution, and 
only at Portland, Oregon (U.S.). Similarly, the O3 distributions exhibit very few plumes (<1 % of the 
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data) with concentrations greater than 100 parts per billion by volume (ppbv), which generally reflect 
air masses with a stratospheric origin. Thus, the entire troposphere can be envisioned as completely 
filled with plumes of continuously varying concentrations in the process of intermixing and 
dispersing. The broad distribution of concentrations represents the plumes responsible for transporting 
the large majority of O3 and CO between continents, and the discrete, more concentrated plumes 
contribute only minimally. Impacts from a particular emission region will therefore be reflected in the 
average and associated variability of observed concentrations at a particular downwind location, and 
not as a series of discrete events. The fact that air arrives over a downwind continent as a continuous 
distribution of air masses with different emission histories from both anthropogenic and natural 
sources makes it difficult to quantify the contribution directly attributable to a particular emission 
region from observations alone.  

Abundant evidence of episodes of long-range transport of elevated concentrations of both O3 
and PM is available as exemplified in this chapter, but determination of the impact of observed 
transport on downwind regional air quality presents further challenges, i.e. how does import of 
pollutants from a particular source region change concentrations in the boundary layer of the receptor 
region. It is clear there are preferential regions for pollutant import over receptor regions (see Chapter 
1), but import of pollutants in the free troposphere does not mean that these air masses then descend 
into the boundary layer. Robust, quantitative determination of the pollution import into a region 
would require a dense network of vertically resolved measurements, which presently does not exist.  

Various definitions have been employed in attempts to quantify the contribution of long-range 
transport to the observed concentrations and temporal changes in concentrations of pollutants 
observed in downwind measurements (see Chapter 1). The term ―background‖ is often used to 
describe concentrations at ―clean, remote‖ sites that have not been influenced by anthropogenic 
pollution. However, for relatively long-lived pollutants such as O3, all sites in the northern hemisphere 
are influenced by anthropogenic emissions, so that the use of this term is ambiguous. The term 
―baseline‖ is used here to describe concentrations in air masses without the contribution from local 
anthropogenic emissions. Diagnosis of baseline concentrations is not straightforward because of the 
complex air mass histories described above. Analysis of decadal changes in mean O3 concentrations at 
representative receptor region sites can provide indications of the impact of changing anthropogenic 
emissions. However, it must be recognized that changes in the observed concentrations can be 
confounded by changes in natural sources and changes in transport patterns. Furthermore, different 
changes of anthropogenic emissions in different source regions can complicate the picture. Thus, 
observing concentration changes and attributing them to changes in upwind emissions is complex.  

In this Chapter, we first consider the direct observational evidence for long-range transport of 
O3 (Section 2.2) and PM (Section 2.3) from satellite, aircraft, and ground-based data. Long-term 
changes (trends) in the amount of O3 or PM at appropriate measurement locations are also discussed. 
Section 2.4 summarizes results arising from the use of meteorologically-based and data-based 
techniques (e.g. constituent ratios) to quantify the sources contributing to measurements collected at 
particular locations. Results and subsequent analysis from field experiments specifically designed to 
quantify the processing occurring during long-range transport are also discussed. A summary of future 
research needs is given in Section 2.5. In this chapter the term ―aerosols‖ is often used 
interchangeably with ―particulate matter (PM)‖ as is customary in the field of atmospheric chemistry, 
even though ―aerosols‖ technically refers to the suspension of PM in air.  

FINDING: The signature of long-range pollutant transport in measurements made downwind 
of sources depends on the lifetime of the particular pollutant. Discrete plumes of enhanced 
concentrations characterize pollutants with short lifetimes and no photochemical sources, while 
continuous distributions of concentrations represent transport of pollutants with longer 
lifetimes. In the latter case, the entire troposphere can be envisioned as completely filled with 
plumes of continuously varying concentrations in the process of intermixing and dispersing. 

RECOMMENDATION: For longer-lived species such as O3 and CO a broad distribution of 
concentrations represents plumes responsible for transporting the large majority of these 
species between continents. This broad distribution of baseline concentrations of such species 
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requires fuller characterization by measurement programs to allow comparison with global 
model calculations, and for input as boundary conditions into regional air quality models.  

 
Figure 2.1. Summertime probability distribution functions of CO (red lines) and O3 (blue 
lines) measured between 2 and 10 km altitude by MOZAIC (http://mozaic.aero.obs-mip.fr) 
aircraft on descents into and ascents out off Portland, Oregon (solid lines) and Los Angeles, 
California (dotted lines) on the U.S. west coast. 

2.2. Long-range Transport of Ozone and its Precursors  
2.2.1. The View from Satellites  

The major advances in satellite remote sensing over the last decade now provide a global 
perspective of intercontinental pollution transport and the impact of that transport upon downwind 
receptor regions. Table 2.1 summarizes satellite remote sensing capabilities of tropospheric O3 and its 
precursors. Only downward (nadir) viewing instruments are included here. All fly in near-polar, sun-
synchronous, low Earth orbits. Observations at low and mid-latitudes are at a constant local time; 
sampling frequency increases at high latitudes. These instruments employ passive techniques, 
observing either solar backscatter (SCIAMACHY, OMI, GOME-2) or thermal emission (MOPITT, 
TES, AIRS, IASI). Retrievals of NO2 and formaldehyde (HCHO) are tropospheric columns, while the 
retrievals of CO and O3 often have some vertical profile information (typically 0.5-2 Degrees of 
Freedom for Signal). Other observations include nitric acid (HNO3) [Wespes et al., 2009] and glyoxal 
[Wittrock et al., 2006]. Two recent workshops assessed air quality applications from space [Edwards, 
2006; EU, 2006], and two recent reviews describe capabilities for satellite remote sensing of air 
quality [Fishman et al., 2008; Martin, 2008].  

Satellite observations of CO provide the most compelling remote-sensing evidence for long-
range transport of trace gases. Animations of satellite observations for successive days reveal clear 
visualization of transport from continental source regions across oceans. Published examples of long-
range transport of CO within the Northern Hemisphere include transport both from Asia to North 
America [Heald et al., 2003; Zhang et al., 2008] and from North America to Europe [Guerova et al., 
2006; Pfister et al., 2006]. Figure 2.2 shows a multi-day average of a CO plume from intense 
wildfires in Alaska and Canada. The plume can be traced across North America and the Atlantic 
Ocean to Europe. Aircraft measurements as part of the ICARTT aircraft campaign that sampled this 
plume corroborate the long-range transport. Inverse modelling using the MOZART chemical transport 
model showed that the fires emitted about as much CO as did human-related activities in the 
continental U.S, during the same time period, about 30 teragrams (Tg) CO for June-August, 2004. 
Modelling and measurements show that emissions from the 2004 North American wildfires caused 
ground-level concentrations of O3 to increase by 25 per cent or more in parts of the northern 
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continental U.S. and the central North Atlantic and by 10 per cent as far away as Europe [Pfister et 
al., 2006; Val Martin et al., 2006, see also discussion in Section 2.4]. Satellite observations of NO2 
also provide evidence of long-range transport from North America to Europe [Guerova et al., 2006; 
Martin et al., 2006]. 

Satellite observations of tropospheric O3 columns have matured considerably over the last 
decade to reveal mid-latitude features with increasing confidence [Creilson et al., 2003; Liu et al., 
2010; Schoeberl et al., 2007; Worden, 2007; Ziemke et al., 2006]. Figure 2.3 presents examples for a 
summer and an autumn month (northern hemisphere). The O3 columns shown are dominated by free-
tropospheric concentrations, and elevated topography reduces local O3 columns (i.e. western North 
America, Himalayas). Nonetheless, significant O3 enhancements are apparent in regions of large 
precursor emission, for example, the eastern U.S. [see also Creilson et al., 2003] and East Asia in 
July. A broad enhanced region in the northern mid-latitudes is associated with export of O3 and its 
precursors from adjacent continental regions [Ziemke et al., 2006]. The enhancement over the Middle 
East reflects a combination of lightning, pollution sources, and dynamics, as inferred from GEOS-
Chem simulations [Liu et al., 2009]. Lightning, biomass burning, and stratospheric O3 contribute to 
the O3 column enhancements in the southern tropics in October, as indicated by GEOS-Chem 
simulations [Sauvage et al., 2007].  

Table 2.1. Current nadir-viewing satellite remote sensing of tropospheric ozone and its precursors 

Instrument Platform Meas. 

Period 

Typical 
Nadir Res. 
(km) 

Equator 
Crossing 
Timea 

Global 
coverage 
(days)b 

Spectral 
Range 
(μm) 

NO2 HCHO CO O3 

MOPITT Terra 2000- 22x22  10:30  3.5 2.3, 4.7   X  
AIRS Aqua 2002- 14x14 1:30  1 3.7-16   X  
SCIA-
MACHY 

Envisat 2002- 60x30  10:00  6 0.23-2.3 X X X X 

OMI Aura 2004- 24x13 1:45  1 0.27-0.50 X X  X 
TES Aura 2004- 8x5  1:45  n/a 3.3-15.4   X X 
GOME-2 MetOp 2006- 80x40 9:30  1 0.24-0.79 X X  X 
IASI MetOp 2006- 12x12 9:30  0.5 3.6-15.5   X X 
aCrossing time occurs at both AM and PM.  
bValue given for clear-sky conditions. Clouds impede the retrieval.  
cMOPITT: Measurements Of Pollution In The Troposphere; AIRS: Atmospheric Infrared Sounder; 
SCIAMACHY: SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY; OMI: Ozone 
Monitoring Instrument; TES: Tropospheric Emission Spectrometer; GOME: Global Ozone Monitoring 
Experiment; IASI: Infrared Atmospheric Sounding Interferometer 

 

2.2.2. Direct Evidence for O3 and Precursor Transport from In Situ and Lidar Measurements  
 Because of the complexity of its sources, correlations of in-situ observations of O3 with other 
tracers is the most certain and direct means to identify episodic long-range transport of O3 of 
anthropogenic origin. Tracers such as CO, NOx, non-methane hydrocarbons, mercury (Hg) and aerosols 
have all been used to help identify sources of O3 in polluted airmasses. The quantitative relationship 
between O3 and a tracer is often expressed as an enhancement ratio, which is the ratio of the increase of O3 
to that of the tracer during the transport episode (see Section 2.4.2). Numerous studies have identified long-
range transport of anthropogenically generated O3 across the Pacific and/or Atlantic Oceans. In some cases, 
intercontinental transport of O3 has been shown to significantly impact the surface concentrations and even 
contribute to exceedances of local ambient air quality standards (see Section 2.2.4).  

Trans-Atlantic transport  

 Many studies have documented long-range transport of O3 and its precursors across the North 
Atlantic [Honrath et al., 2004; Huntrieser et al., 2005; Stohl and Trickl, 1999; Stohl et al., 2003; Trickl et 
al., 2003; Val Martin et al., 2006]. Sources include both boreal fire plumes as well as urban and industrial 
pollution. The transport occurs mostly in the free troposphere and has been detected by aircraft and lidar  
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  Carbon Monoxide Mixing Ratio (ppbv) at 700 hectopascals 

Figure 2.2. Example of long-range transport from Alaskan and Canadian wildfires to Europe 
observed by MOPITT over 15-23 July 2004. Plumes of anthropogenic pollution can also be 
seen leaving Asia and crossing the Pacific Ocean. [Reprinted with permission from Figure 2.6 
in Global Sources of Local Pollution: an Assessment of Long-Range Transport of Key Air 
Pollutants to and from the United States, [2010], by the National Academy of Sciences, 
Courtesy of the National Academies Press, Washington, D.C.] 

 

 

 

  
Figure 2.3. Example of tropospheric ozone columns determined by residual from OMI 
observations of total column O3, and MLS observations of stratospheric O3 [Ziemke et al., 
2006]. Values reflect a complex interplay of long-range transport, in situ chemical production, 
loss processes, and stratospheric sources.  
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and at surface sites in the Alps. At Mace Head, a low elevation site on the west coast of Ireland, Derwent et 
al. [1997] found 5 probable cases of North American influence but the concentrations were quite low. The 
only major North American export event to show a strong direct impact on low altitude European sites 
involved smoke plumes from the widespread forest fires in Canada [Forster et al., 2001]. 

The International Global Atmospheric Chemistry (IGAC)-sponsored ITCT Lagrangian 2K4 
experiment, which was part of the ICARTT, ITOP and INTEX-A field campaigns in summer 2004, 
provided the opportunity to observe (and model) in situ formation of O3 during transport from emission 
regions in North America. In total 4 aircraft were used, along with surface and ozonesonde observations 
[Fehsenfeld et al., 2006]. Measurements of CO, black carbon (BC), NOx, total reactive nitrogen (NOy) and 
O3 were also made at the PICO-NARE Observatory (38.5°N, 28.4°W) at 2.2 kilometres above sea level 
(km asl) in the Azores. This site is well situated to observe long-range transport since the Azores are 
frequently impacted by airflow from middle and high latitudes [Honrath et al., 2004; Owen et al., 2006; 
Val Martin et al., 2006; Val Martin et al., 2008]. Indeed, North American emissions emitted 6 to 15 days 
earlier, frequently impacted the PICO-NARE station during summer 2004 [Val Martin et al., 2006]. Figure 
2.4 shows an example that included the highest concentration of CO yet recorded at the station.  

 
Figure 2.4. Time series of 30-min average CO, NOy and O3, and 1-hour average BC 
observations at the PICO-NARE Observatory (Azores, Portugal) during transport of boreal 
wildfire emissions to the site. CO is plotted with open blue circles, NOy with red squares, BC 
with open purple triangles and O3 with green triangles. Vertical solid lines bound the transport 
event. [Adapted from Figure 3 in Val Martin, M., et al. (2006), Significant enhancements of 
nitrogen oxides, black carbon, and ozone in the North Atlantic lower free troposphere resulting 
from North American boreal wildfires, Journal of Geophysical Research, 111(D23S60).]  
In summer 2004 two ground-based ozone lidars at Observatoire de Haute Provence (OHP) in 

south France (43.9°N, 5.7°E, 0.7 km asl) measured vertical profiles of O3 and aerosol scattering ratio 
from the boundary layer to the tropopause (Figure 2.5). The largest variability in the columns was due to 
local pollution within the boundary layer and stratosphere-troposphere exchange. Several O3 rich layers 
within the free troposphere also had aerosol enhancements and were related to long-range transport of 
biomass burning emissions from North America [Real et al., 2007]. These polluted layers were thin (< 1 
km) and remained coherent as they were transported over the Atlantic Ocean. The layers observed above 
OHP exhibited O3 mixing ratios 50% greater than values in adjacent air and increased the tropospheric 
column O3 by 5 to 10% [Ravetta et al., 2007]. In 2004 aircraft as part of the MOZAIC program also 
measured fire plumes originating from Alaska in the free troposphere over the eastern U.S., the North 
Atlantic and Western Europe [http://mozaic.aero.obs-mip.fr, Elguindi et al., 2010]. Note that while CO 
was strongly enhanced in the MOZAIC vertical profiles, O3 was not. Detailed analyses of such cases 
and in particular Lagrangian cases where the same air masses were sampled several times have shown 
significant O3 production in certain plumes (e.g. forest fire plumes) whilst in other cases mixing and 
photochemical destruction dominated. Further examples are discussed in Section 2.4. 
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Figure 2.5. (a) Ozone mixing ratio cross section in ppb measured at Observatoire de Haute 
Provence in July 2004. Tick marks correspond to 0000 UT. This figure combines vertical 
profiles measured by 2 ozone lidars. ECMWF analyses have been used to compute potential 
vorticity (PV) profiles in order to estimate the height of the tropopause (PV = 1 pvu for the 
lower thick black line, PV = 2 pvu for the upper one) and spot stratospheric intrusions (large 
squares). (b) Vertical cross section of aerosol scattering ratio (a quantity proportional to the 
aerosol concentration) derived from the 316-nm wavelength ALTO lidar on the same days. 
Ozone rich layers related to long-range transport are circled in black. [Adapted from Ravetta, 
F., et al. (2007), Long-range transport and tropospheric ozone variability in the western 
Mediterranean region during the Intercontinental Transport of Ozone and Precursors (ITOP-
2004) campaign, Journal of Geophysical Research, 112(D10S46).] 

Trans-Pacific transport  

 The greater transport distance and increased complexity of transport patterns make it more 
difficult to detect long-range transport across the Pacific Ocean. Our understanding of trans-Pacific 
transport of O3 and other pollutants has been improved by recent studies, e.g. the NASA led INTEX-A and 
B campaigns, which measured from aircraft over North America and the eastern North Pacific [Singh et 
al., 2006; Singh et al., 2009] and from the Mt. Bachelor Observatory (MBO) at 2.7 km asl in central 
Oregon [Jaffe et al., 2005a; Weiss-Penzias et al., 2007]. During INTEX-A, which took place in the 
summer of 2004, several plumes of Asian origin were encountered as far downwind as over eastern North 
America [e.g., Liang et al., 2007]. Fischer et al. [2009] report on PAN decomposition and O3 production 
during subsidence based upon observations from the Mt Bachelor Observatory. This work indicates that 
transport of PAN and its subsequent decomposition to NOx has a significant impact on the O3 
concentrations in air arriving at North America. Reidmiller et al. [2009] report on interannual variability in 
long-range transport using satellite data and observations from Mt. Bachelor, combined with the GEOS-
CHEM model. They conclude that variations in transport and biomass burning emissions largely drive the 
year-to-year variations in CO seen in the eastern Pacific atmosphere. Weiss-Penzias et al. [2007] identified 
ten separate episodic pollution transport events from Asian industrial sources arriving at Mt. Bachelor. In 
these events the Hg/CO enhancement ratio appears to be a unique tracer of Asian pollution plumes, being 
3-4 times higher in Asian plumes compared to U.S. or biomass burning plumes.  

In the past few years efforts have been made to measure pollutant concentrations in air masses 
above East Asia, especially within China where emissions are rapidly increasing. These studies [Ding 
et al., 2009] have revealed pollutant concentrations that are much greater than those encountered over 
Europe or North America [e.g. Hudman et al., 2007; 2008]. High pollutant levels detected above the 
boundary layer over China include a plume at 2.6 km above northeast China with O3 and CO as high 
as 140 ppbv and 1185 ppbv, respectively [Ding et al., 2009] and a layer of pollution at 2.5-3.5 km 
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above Beijing, lofted by upslope mountain flow, with 90 ppbv of O3 and 2200 ppbv of CO. Ding et al. 
[2008] examined O3 from the MOZAIC campaign and found higher concentrations in the lower 
troposphere then other large Northern Hemispheric cities. These strong Asian pollution plumes 
contain far more CO than has been detected in Asian plumes transported to above western North 
America [maximum CO of ~300 ppbv, Nowak et al., 2004], indicating the degree of dilution that 
occurs during transport. 

Transport across South Asia, Europe and East Asia 

The impact of European pollution on Asia has been demonstrated from ground-based 
observations at Mondy in East Siberia [Pochanart et al., 2003]. During the TROICA-8 expedition 
[Turnbull et al., 2009] 14CO2 was measured together with CO, sulphur hexafluoride and 
perchloroethylene along the Trans-Siberian railway between Moscow (Russia, 55°44‘ N, 37°33‘ E) 
and Khabarovsk (Russia, 48°33‘ N, 135°06‘ E) in March-April 2004. They observed an increase of 
14CO2 (a measure of the fossil fuel contribution to measured carbon dioxide concentration) and a 
decrease of CO from West to East, which they interpreted to reflect emission and transport of 
anthropogenic species from Europe to Asia. More recently, the Nepal Climate Observatory-Pyramid 
(NCO-P) at 5.1 km asl was established in the Khumbu valley in the Himalayas [Bonasoni et al., 
2008]. Figure 2.6 shows O3 and BC measured at the observatory. Pollutant transport with high O3 
(63±9 ppbv) to the site is common in the pre-monsoon period. According to back-trajectory analysis, 
they concluded that it was probably related to continental outflow from Eurasia with an upper 
troposphere/lower stratosphere influence. O3 enhancements occurred both with and without 
enhancements in other tracers. In mid-June O3 and BC were transported to the site from anthropogenic 
sources to the east near the India-Pakistan border.  

 
Figure 2.6. O3 and BC measured March-August 2006 at the Nepal Climate Observatory-
Pyramid (NCO-P) at 5.1 km asl in the Khumbu valley of the Himalayas. [Adapted from 
Figures 6 and 8 from Bonasoni, P., et al. (2008), The ABC-Pyramid Atmospheric Observatory 
in Himalaya for aerosol, ozone and halocarbon measurements, Science of the Total 
Environment, 391: 252-261, with permission from Elsevier.] O3 is shown in red circles on left 
axis (ppbv) and BC in blue crosses on right axis (nanograms per cubic meter). The first high 
O3 event in early March was attributed to UT/LS transport due to meteorological conditions 
and an absence of other pollutant tracers. The high O3 event in mid-June, which also showed a 
BC enhancement, was attributed to anthropogenic pollution arriving from the east.  

2.2.3. Indirect evidence from long-term trends in baseline O3  
During the latter half of the 20th century baseline concentrations of O3 increased markedly at 

northern mid-latitudes. This increase has been documented by a variety of observational studies, and 
is generally attributed to increasing anthropogenic emissions of the precursors that fuel photochemical 
O3 production. These increased emissions accompanied the growth and development of the economies 
of the industrialized nations [e.g., Horowitz, 2006; Lamarque et al., 2005]. This observed increase in 
O3 concentrations is one of the most important manifestations of the hemispheric transport of air 
pollution. Uncertainty remains regarding the magnitude of the increase from pre-industrial to present 
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day since pre-industrial O3 concentrations are poorly known, few measurements were made before the 
late 1970s, and different data sets for the same region do not always give consistent results. Since 
global models cannot reproduce the very low O3 levels suggested by the measurements of that time 
[e.g. Mickley et al., 2001], the quantitative assignment of the cause of the increase is also uncertain. 
This section reviews the strongest observational evidence for these temporal trends. The primary 
focus is on the O3 concentrations in onshore flow at the west coasts of Europe and North America 
with some comparisons to trends observed in Asian outflow. Without a west coast, it is more difficult 
to establish long-term trends for baseline O3 entering Asia, especially from the more limited 
observational record in this region. The O3 concentrations in onshore flow most clearly show the 
influence of long-range transport, since they represent baseline O3 concentrations.  

Figures 2.7 and 2.8 summarize the results from several data sets that provide the strongest 
evidence for increasing baseline O3 concentrations at northern mid-latitudes since the mid-20th 
century. Figure 2.7 shows results from spring. In this season intercontinental flow is most important, 
observational data are most abundant, and influences from regional photochemical O3 production are 
relatively small. Figure 2.8 compares springtime trends with those in other seasons. These data 
represent the longest, highest quality measurement records available from sites that are likely to 
represent baseline O3 changes. The studies vary in the time period covered, and in the degree to which 
regional influences may obscure baseline trends. Given this variability, a simple statistical approach is 
chosen. Linear and quadratic polynomial least-squares fits are made to seasonally averaged data from 
each site. Baseline data are examined where available (i.e. only at Mace Head and Pacific marine 
boundary layer). The polynomial fit is included in Figure 2.7 only if the quadratic term is significant. 
At least up to the year 2000 the linear trends have remained remarkably constant over many of the 
individual data records. One can argue that there has been a levelling off or even decrease at the 
European stations, particularly at the three central European sites (Hohenpeissenberg, Jungfraujoch 
and Zugspitze) where the quadratic term is statistically significant, and negative. For these three sites 
the average trends in Figure 2.8 are derived from the linear-least squares fits made to the portion of 
the data record before 2000. For all sites the slope of the linear trend derived from this statistical 
approach is the best estimate of the average annual change in the measured O3 for the season and 
period selected. In all cases 95% confidence limits are calculated for the slope. Unfortunately, very 
few data sets have been selected for baseline conditions, but all the sites are located where trends in 
baseline O3 are expected to dominate the trends in average O3. Consistency in the derived trends over 
large regions supports the assumption that the derived trends represent the baseline O3 trend.  

Beginning in the 19th century a long record of apparently reliable O3 measurements in ambient 
air was collected in Europe. Measurements performed at the Montsouris Observatory close to Paris 
from 1876 to 1912 using a solution chemistry method show low O3 concentrations (10-15 ppbv) in the 
planetary boundary layer (PBL) [Volz and Kley, 1988]. Similar measurements were conducted from 
1956-1983 at Arkona, a coastal site on the Baltic Sea [Feister and Warmbt, 1987], and the series was 
continued at the nearby Zingst site (Figures 2.7 and 2.8). The earliest springtime measurements at 
Arkona show O3 concentrations around 15 ppbv followed by an increase (amounting to about 20 
ppbv) to the present Zingst concentrations. However, it remains difficult to judge whether SO2, an 
interference of the chemical method, produced a negative bias in these earlier measurements, although 
data affected by SO2 transport from the capital of Paris were removed by using local wind 
measurements at the Montsouris Observatory [Volz and Kley, 1988]. Solution chemistry 
measurements performed at Arosa, an alpine valley site at 1.8 km asl in the Swiss Alps in the 1950s 
also showed low annual mean values of around 20 ppbv [Staehelin et al., 1994], and O3 was also 
measured in Arosa during some clear nights in the 1930s (using long-path ultraviolet measurements). 
These 1930s measurements yielded similar values to the 1950s solution chemistry measurements, 
which supports their reliability (note that the large increase in anthropogenic O3 precursor emissions 
took place in the decades after World War II).  
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Figure 2.7. Springtime trends in O3 concentrations measured in (a) Europe and (b) western 
North America and Japan. The lines (in colour) indicate the linear regressions to the data, and 
the curves (in black) indicate quadratic polynomial fits to the three central European sites over 
the time span of the lines. Arkona and Zingst are two sites located close to the Baltic Sea. 
Mace Head is located at the west coast of Ireland. Hohenpiessenberg (1.0 km asl) and 
Zugspitze (3.0 km asl) are in southern Germany, and Jungfraujoch (3.6 km asl) is in 
Switzerland. The North American data are from several sea level Pacific coastal sites and 
Lassen National Park (1.8 km asl) near the west coast, and from the free troposphere over the 
western part of the continent. The Japanese data are from Mt. Happo (1.9 km asl) on the 
Japanese mainland and Rishiri, a northern (45N) sea level island site.  

Overall, a consistent trend of increasing O3 has been observed at European surface sites 
through the second half of the 20th century, beginning with the early measurements summarized 
above, and continuing with modern measurement methods. Figure 2.7a shows that long, continuous 
European surface O3 records from the rural Hohenpeissenberg (Stefan Gilge, Hohenpeissenberg 
Meteorological Observatory, German Meteorological Service, Hohenpeissenberg, Germany, personal 
communication, 2010) and the mountaintop Zugspitze (Hans-Eckhart Scheel Karlsruhe Institute of 
Technology, IMK-IFU, personal communication, 2010) sites in southern Germany, as well as the 
shorter records for the marine Mace Head [Derwent et al., 2007] and the mountaintop Jungfraujoch 
sites [Bronnimann et al., 2002], all approximately parallel the Arkona-Zingst springtime record, at 
least until 2000. A similar trend is also seen in continuous surface O3 measurements at another alpine 
high altitude site: Sonnblick (Austria, 3.1 km asl). The data from the Figure 2.8 demonstrate that O3 
has increased during all seasons with some indication of greater increases in spring and winter, and 
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smaller increases in summer and particularly autumn. Trends determined from springtime data sets 
from Arosa in the 1930s, 1950s and around 1990 [Staehelin et al., 1994] and summertime data from 
Jungfraujoch in the 1930s [Crutzen, 1988], which define the end points of the trends for those two 
sites in Figure 2.8, are consistent with the trends extracted from the continuous data sets.  

 
Figure 2.8. Average annual linear trends in O3 concentrations in different seasons in Europe 
(left of dashed lines), North America and Japan (right of dashed lines). The slopes of linear 
regressions of seasonally averaged data (e.g., the lines in Figure 2.7) provide the trends. The 
sites, symbols and period of the linear trend determination are the same as in Figure 2.7, 
except for the three central European sites, where the linear fits end in 2000.  
Trends derived from the more limited North American measurements (Figures 2.7 and 2.8) 

are consistent with each other and similar to the European trends although they continue after 2000. 
No long-term record is available from a single North American marine boundary layer site that is 
suitable for characterizing baseline O3 concentrations arriving at North America. However, Parrish et 
al. [2009] combined baseline data from several North American marine sits to derive seasonal 
baseline trends (included in Figures 2.7 and 2.8) that are approximately the same as those from Mace 
Head. Similarly, trends at a long-term, rural site near the west coast of North America that can be 
considered to represent trends in O3 in onshore flow (Lassen National Park) parallel the marine 
boundary layer trends. A recent study that combined all available free troposphere data for springtime 
over western North America [Cooper, 2010] derived a trend in approximate accord with the trends 
derived from the surface measurements, and the trends were stronger in air with strong influence from 
the South and East Asian boundary layer. Although shorter than the European records, the three North 
American trends indicate increasing baseline O3 in air entering North America from at least the mid-
1980s to the present.  

At inland North American sites consistent baseline O3 concentration trends are difficult to 
discern. Jaffe and Ray [2007] report that average O3 concentrations generally increased from 1987–
2004 at rural sites in the western US, but the rate of increase varied from 0 to 0.5 ppbv/yr across 9 
sites. Oltmans et al. [2006] find no generally increasing trends in average O3 concentrations over 
North America. It may well be that at interior North American locations, the increase in baseline O3 
concentrations is obscured by decreasing regional and local O3 production due to decreasing 
emissions of O3 precursors within North America. Indeed, the US Environmental Protection Agency 
(http://www.epa.gov/airtrends/ozone.html#oznat) notes that maximum O3 concentrations are 
decreasing throughout the country in response to reduced precursor emissions.  
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Long-term, continuous O3 measurements are limited in Asia, but those that exist generally 
indicate increasing O3 concentrations. In Japan, continuous measurements at Mt. Happo Observatory 
(1.9 km asl) show a springtime O3 increase of 1.30 ± 0.28 ppbv/yr from 1991 to 2007 [Tanimoto, 
2009] and positive trends in all seasons that are the most rapid increases found in any of the data sets 
investigated here (see Figure 2.7b and 2.8). Six Pacific Rim island sites [Tanimoto et al., 2009], e.g. 
Rishiri Island included in Figure 2.7, together give on average an increasing springtime trend of 0.62 
± 0.36 ppbv/yr, but trends from individual stations are not statistically significant due to their short 
time span. West of Japan, Beijing experienced annual average O3 increases in the PBL of 5-8 ppbv 
between 1995 and 2005, as measured by MOZAIC aircraft profiles [Ding et al., 2008].  

Increasing export of O3 from Asia is expected from observed increases in regional O3 
concentrations. In the region of Taipei, Taiwan (25° N), yearly surface O3 averaged across several sites 
increased during 1994-2003 at the rate of 0.96 ppbv/yr [Chou et al., 2006]. In southern China, average 
yearly O3 increased by about 50% between the late 1980s and 1990s at an urban monitoring site in Hong 
Kong (22º N) [Chan et al., 2003]. A coastal site southeast of Hong Kong shows an O3 rate of increase of 
0.58 ppbv year-1 for yearly data during 1994-2007 [Wang et al., 2009]. In East Asia, generally all sites 
show that O3 has increased over the past 20 years as would be expected from the strong increases in 
regional O3 precursor emissions (e.g. see Figs. 3.9 and 3.10). The rate of increase is on the order of 1 
ppbv/yr, somewhat stronger than the rate of increase in Europe and North America.  

Ozonesondes provide some of the longest-term records of the evolution of baseline O3 over 
Europe, as well as North America and Japan, but their usefulness appears limited. The three long-term 
European records (based on Brewer Mast sensors at Hohenpeissenberg, Germany; Payerne, 
Switzerland; and Uccle, Belgium) provide the longest continuous records of O3 in the free 
troposphere. They show strongly increasing concentrations from 1970 to 1990, but the three records 
show large deviations [see Logan et al., 1999]. The O3 evolution derived from the ozonesonde 
measurements of Hohenpeissenberg and Payerne do not agree well with the nearby mountain surface 
series of Jungfraujoch and Zugspitze in the early part of the 1990s [Ordóñez, 2006]. The O3 changes 
obtained from regular aircraft measurements of MOZAIC data since 1994 [Thouret et al., 2006; 
Zbinden et al., 2006] are more consistent with the surface O3 measurements of Jungfraujoch and 
Zugspitze than those of the ozonesonde records from Hohenpeisseneberg and Payerne. A recent 
comparison of O3 changes in the upper troposphere derived from climatologies of the regular aircraft 
measurements from the project GASP (1975-1979) and MOZAIC (1994-2001) programs showed 
unexplained differences with the changes derived from the ozonesonde measurements [Schnadt 
Poberaj et al., 2009]. The air sampled by ozonesondes, high alpine surface stations and regular 
aircraft (MOZAIC) are not identical, so some differences in measured O3 concentrations are expected 
(e.g. high mountain sites can be affected by local wind systems, which remain to be analyzed in more 
detail). Nevertheless, it appears that the baseline O3 evolution over Europe until around 2000 is 
probably more reliably described by high mountain sites and MOZAIC data than by the European 
ozonesondes. The records from the surface sites, aircraft and sondes show nearly consistent variability 
since 2000 compared to earlier times, which might point to some data quality problems in the earlier 
sonde data (Jennifer Logan, Department of Earth and Planetary Sciences, Harvard University, 
Cambridge, Massachusetts, USA, personal communication, 2009). 

In summary, various studies have found significant positive temporal trends in the O3 
concentrations at northern temperate latitudes. However, there remains significant uncertainty 
regarding the magnitude and exact cause of these increases.  

2.2.4. Implications for Surface Ozone Air Quality in Receptor Regions  
Even though the O3 surface concentrations on the downwind sides of the Atlantic and Pacific 

oceanic basins are the lowest found in the northern mid-latitudes, these concentrations still raise air 
quality concerns in regions receiving marine air inflow. These concerns arise both from human health 
and crop and ecosystem damage perspectives.  

The concentrations of O3 in air masses arriving at the Atlantic coastal fringes of Europe have 
been steadily rising over the past several decades (see Section 2.2.3), and have now reached levels 
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that exceed internationally accepted air quality guidelines and targets set for the protection of human 
health [50 ppb, maximum 8-hour level, WHO, 2006] and vegetation [40 ppb, accumulated time above 
40 ppb, Fuhrer et al., 1997]. Figure 2.9 presents the average monthly level of O3 observed in baseline 
air masses arriving at Mace Head, Ireland taken from Simmonds et al. [2004] and extended up to July 
2008. Monthly averages now exceed 40 ppb during much of the growing season in all years and 
approach or exceed 50 ppb in some spring months.  

 
Figure 2.9. Monthly average O3 mixing ratios in baseline air masses arriving at Mace Head, 
Ireland from 1987 – 2009, showing the 40 ppb and 50 ppb thresholds set for the protection of 
vegetation (orange line) and human health (red line), respectively. 

As these baseline air masses travel further into the continent of Europe from the coastal 
fringes, surface uptake and photochemical destruction will necessarily erode the levels in Figure 2.9, 
whilst descent of ozone-rich air from above and photochemical production may supplement them. 
Figure 1.6 shows a model calculation of how a baseline air mass would further evolve during 
transport to southern England as a function of season; the sum of all contributions except Europe-
regional represents the baseline O3 contribution at this further downwind site. Under these conditions, 
intercontinental transport will still represent a substantial fraction of any subsequent exceedance of air 
quality standards set in Europe for the protection of human health and vegetation.  

The O3 concentrations in air flowing into Japan have significant air quality impacts. Tanimoto 
[2009] reported the increase in the number of air quality standard exceedances for surface O3 in spring 
at Mt. Happo (HPO), a rural mountain site in Japan (36.7°N, 137.8°E, 1.85 km asl) that is largely 
influenced by long-range transport from the Eurasian continent. From 1999 to 2006 the number of 
days that O3 exceeded 84 ppbv increased from 10 to 15 to about 30, approximately doubling over the 
course of 8 years. In 2006 HPO experienced O3 levels exceeding 120 ppbv for the first time. This 
increase in the frequency of high-ozone episodes, which exceed the air quality standard thresholds, is 
likely due to significantly increased O3 transport from the upwind regions. Trends in the tropospheric 
NO2 columns over east-central China in spring indicate that region possibly contributes to the large O3 
increase at HPO.  

The impact of the long-range transport of O3 is also substantial in western North America on 
the eastern side of the Pacific Ocean. Air with low O3 concentrations flows ashore within the marine 
boundary layer, but a strong vertical gradient is present above the boundary layer at the North 
American west coast. Ozonesondes launched from Trinidad Head, California, a coastal NOAA 
observatory (http://www.esrl.noaa.gov/gmd/obop/thd/), find that summertime O3 mixing ratios 
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average only 23 ± 7 ppbv (± one standard deviation) at 100 m, but are more than twice as high (53 ± 
16 ppbv) at 2 km [Oltmans et al., 2008]. As the onshore marine airflow encounters the complex 
topography that characterizes much of the North American west coast, ozone-rich air from above the 
marine boundary layer may be transported to the surface.  

Some experimental analysis does indicate that transported baseline O3 makes a major 
contribution to surface O3 at some western North American sites, even during periods when the U.S. 
National Ambient Air Quality Standard (NAAQS) is exceeded. Jaffe et al. [2004] discuss an O3 
exceedance that occurred in the Seattle, Washington area due to long-range transport of fire emissions 
from Siberia. In addition, summertime surface O3 in California‘s Central Valley directly inland from 
the Trinidad Head ozone sonde launch site often exceeds the NAAQS as indicated in Figure 2.10 
[Parrish et al., 2010]. The mean maximum 8-hr average O3 on exceedance days (i.e. those days when 
8-hr average O3 exceeds 75 ppbv) is 20 ppbv higher than on non-exceedance days. The transported 
baseline O3, as measured 22 hours earlier by the Trinidad Head sondes, is also higher (by 11 ppbv) on 
exceedance days, which indicates that about half of the average excess O3 on exceedance days is due 
to a larger baseline contribution. The remaining difference is presumably due to greater local and 
regional photochemical O3 production. The average transported baseline O3 on the exceedance days 
(59 ppbv) accounts for a very substantial fraction of the 75 ppbv standard. 

 
Figure 2.10. Correlation between the interpolated daily maximum 8-hr surface O3 averages at 
Tuscan Butte (a California surface site 200 km inland from the Pacific coast) with the O3 
mixing ratio measured by sondes 22 hours earlier at Trinidad Head. The sonde mixing ratios 
are averaged over altitudes from 1.0 to 2.5 km. The solid line shows the bi-variate linear, 
least-squares regression to the data, and the dashed line shows the standard regression. 

2.2.5. Summary, Remaining Uncertainties and Future Needs 
FINDING: Satellites clearly observe long-range transport of CO. Source gases with shorter 
lifetimes such as NO2, are transformed more quickly in the atmosphere, making detection of 
transport difficult far from emission regions. Distinct signatures of long-range transport of O3, 
which has both natural and anthropogenic sources, are difficult to detect by satellite, although 
significant O3 enhancements are apparent over and downwind of regions with large precursor 
emissions. Present satellite retrievals are limited to tropospheric columns with little vertical 
profile information.  

RECOMMENDATION: Further work is needed on quantitative satellite-based estimates of 
long-range transport of O3, its inter-annual variability and its relation to changes in baseline O3 
concentrations. 
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FINDING: Measurements suggest that during the latter half of the 20th century, concentrations 
of O3 at northern mid-latitudes increased by a factor of 2 or more. It is likely that much of this 
increase is due to increases in anthropogenic emissions of O3 precursors. Within the limits of the 
measurement records, the increase has been comparable throughout all longitudes, and has 
occurred in all seasons. More recently, faster increases appear to have taken place downwind of 
eastern Asia, and the increase within the boundary layer of central Europe and North America 
has slowed.  

RECOMMENDATION: The measurements documenting changes in surface and free 
tropospheric O3 over the last several decades need to be systematically and collectively reviewed 
using consistent methods of analysis. Further, appropriate, systematic comparison with global 
models, which currently have problems accurately reproducing observed trends [e.g., Lamarque 

et al., 2010], is required as an on-going activity. 

FINDING: Measurements show that onshore marine airflow above the marine boundary layer 
can carry O3 concentrations that approach urban air quality standards, and that air can mix to 
the surface and contribute substantially to air quality standard violations. This is particularly 
noticeable in low emission regions. The impact depends upon vertical mixing of air into the 
PBL, which is enhanced by complex topography. 

RECOMMENDATION: Conduct focused research efforts that couple measurements with 
models to better quantify the process of air exchange between boundary layer and free 
troposphere in order to fully understand how free tropospheric O3 enhanced by long-range 
pollution transport is mixed to surface. 

2.3. Long-range Transport of Particulate Matter and its Precursors  
Observations of haze layers in the Arctic during spring [Shaw, 1975], later attributed to transport 

from Eurasia [Shaw, 1995], and acid deposition in Canadian and Scandinavian lakes [Likens and 
Bormann, 1974] were the first recorded indications of the large-scale spatial transport of aerosol pollution. 
In the mid-1990s it became clear that long-range transport of PM could affect a downwind continent and 
significantly increase baseline concentrations [Keating et al., 2005]. Since that time, a number of studies 
focused on regional PM levels strongly suggest that trans-boundary contributions dominate the observed 
concentrations in many areas. Development of new observing tools, improvements to the existing emission 
models and inventories, and a better understanding of chemical transformations and removal processes 
now provide better constraints on fundamental processes that drive the global distributions of the key 
aerosol species. Comprehensive studies that combine analysis of satellite-derived and ground-based 
observations with modelled back trajectories offer evidence that trends in emissions on one continent can 
affect PM trends thousands of kilometres downwind [Karnieli et al., 2009].  

Satellite images depict the transport of aerosols over thousands of kilometres for specific 
events and in time-averaged statistics. Transport mainly occurs in the free troposphere along the major 
pathways of long-range transport of gas pollutants. Direct evidence for transport at high altitude can 
be derived from lidar networks or high altitude ground-based stations [Matthias et al., 2004]. It is 
believed that direct aerosol injection into elevated layers is not very efficient from anthropogenic 
sources in urban/industrial settings in contrast to forest fire plumes, which are convectively lofted 
above the ABL by the thermal energy of the fires [Park et al., 2004].  

2.3.1. Quantitative Estimates of Total Particulate Matter Transport from Satellites  
Satellites provide a unique view of the transport of aerosols across ocean basins capturing 

specific events and aiding interpretation of in situ measurements. Time-averaged images of satellite-
retrieved aerosol optical depth (AOD), a measure of total column PM loading, reveal the major 
pathways of aerosol transport from Asia across the Pacific Ocean to North America, and from Africa 
west across the Atlantic Ocean. At first such satellite imagery was only two dimensional, but recent 
analysis of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) 
observations is allowing depictions of three-dimensional aerosol transport [Ben-Ami et al., 2009], e.g. 
Figure 2.11 [Liu et al., 2008]. Altitude information is especially important for calculations of mass 
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flux and to determine what fraction of the PM seen from satellite are in the ABL, thereby affecting 
local air quality. Within the past few years, satellites have begun to provide quantitative information 
on intercontinental aerosol transport. The Multiangle Imaging SpectroRadiometer (MISR) is able to 
characterize AOD, size and degree of nonsphericity. Figure 2.12 shows results from a study 
[Kalashnikova and Kahn, 2008] where particle loading, size and nonsphericity all decreased during 
transport across the Atlantic.  

 

 
Figure 2.11. A dust event that originated in the Sahara desert on 17 August 2007 and was 
transported to the Gulf of Mexico. Red lines represent back trajectories indicating the 
transport track of the dust event. Vertical images are 532 nm attenuated backscatter 
coefficients measured by CALIPSO when passing over the dust transport track. The letter 
‗‗D‘‘ designates the dust layer, and ‗‗S‘‘ represents smoke layers from biomass burning in 
Africa (17–19 August) and South America (22 August). Graphic courtesy of Kurt Severance 
at NASA Langley Research Center. 

 

Following Kaufman et al. [2005], who applied a quantitative method to determine the net 
transport of dust from Africa to the Amazon basin, Yu et al. [2008] have used MODerate resolution 
Imaging Spectroradiometer (MODIS) aerosol products to determine the transport of ―pollution‖ PM 
across the Pacific Basin. They isolated the pollution portion of the aerosol optical thickness measured 
by MODIS and translated the optical thickness to total column mass using a relationship derived from 
field experiments. Analyzed wind fields then allowed a quantitative calculation of the amount of 
pollution PM mass leaving the Asian continent and the amount arriving at North America (Figure 
2.13). MODIS observed about 18 Tg/yr leaving Asia within the latitude range of 30 to 60oN and 4.4 
Tg/yr arriving in North America. This compares well with results from the Goddard Global Ozone 
Chemistry Aerosol Radiation Transport (GOCART) and Global Modelling Initiative (GMI) chemical 
transport models where the model PM was defined as the sum of the BC, organic material and 
sulphate. The MODIS data show a seasonal cycle with a transport maximum in spring, but transport is 
observed in all seasons. Uncertainty analysis showed that the estimation of the aerosol transport 
altitude contributes the largest uncertainty to the satellite-based estimate.  
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2.3.2. In Situ and Lidar Observation of Particulate Matter Outflow from Continents  

The outflow of PM and its precursors from mainland Asia and North America has been 
studied from downwind island sites. Bermuda, a site of long-term measurements from the AEROCE 
(Atmospheric/Ocean Chemistry Experiment) campaign [Prospero, 2001], has provided much 
information on the outflow of O3, PM and their precursors from North America. In Asia, dust and 

Figure 2.12. Evolution of dust plume 
characteristics for four case studies of dust 
transported from Africa to the Caribbean across 
the Atlantic in six days. Top: AOD, a total 
column measure of PM loading, decreases due to 
dry deposition. Center: Angstrom Exponent, an 
inverse measure of particle size. Particles on 
Day 6 are smaller than on Day 1 due to 
gravitational settling of the larger particles. 
Bottom: Particle sphericity showing less 
nonspherical fraction at the end of the transport 
due to increase in the hygroscopicity of particles 
and/or the removal of dust. [Reprinted from 
Figure 11 in Kalashnikova, O. V., and R. A. 
Kahn (2008), Mineral dust plume evolution over 
the Atlantic from MISR and MODIS aerosol 
retrievals, Journal of Geophysical Research, 
113(D24204).] 

 

Figure 2.13. Estimates of annual pollution 
aerosol flux leaving Asia in the West Pacific (a) 
and arriving in North America in the East 
Pacific (b) for different latitude ranges. The blue 
bars are derived from MODIS aerosol products, 
and the red and green bars are derived from 
model calculations. [Reprinted from Figure 7 in 
Yu, H., et al. (2008), A satellite-based 
assessment of transpacific transport of pollution 
aerosol, Journal of Geophysical Research, 
113(D14S12).] 
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anthropogenic PM transported from the mainland have been observed in Japan. Figure 2.14 illustrates 
one event with two peaks evident due to anthropogenic PM. The elemental carbon/organic carbon 
(EC/OC) ratio remained at 0.2 during the whole episode, which indicates anthropogenic PM was 
present even when dust dominated [Takami et al., 2006]. Episodes of enhanced SO2 concentrations 
measured at the summit of Mt. Fuji, Japan (3.8 km asl) provide another example of Asian outflow. 
Enhanced CO and radon (222Rn) concentrations always accompanied the enhanced SO2 
concentrations, and backward trajectories for such events indicate an Asian continental origin 
[Igarashi et al., 2006].  

 
Figure 2.14. Aerosol transport event observed at Cape Hedo, a sea level site at the northern tip of 
Okinawa Japan. From top: (a) sulphate and organic components; (b) organic carbon, elemental 
carbon and PM2.5; and vertical distributions of (c) dust (non-spherical particles) and (d) 
deliquesced anthropogenic aerosol (spherical particles). [Reprinted from Takami, A., et al. (2006), 
Transport of anthropogenic and dust aerosol observed at Cape Hedo, Okinara, Journal of Aerosol 
Research, 21(4): 341-347. Copyright 2006 Japan Association of Aerosol Science and Technology.] 

2.3.3. Observations of Particulate Matter in Continental Inflow  
Measurements on the eastern sides of the North Atlantic and North Pacific Oceans record the 

arrival of pollution PM from North America and Asia, respectively. At Mace Head, Ireland, 
anthropogenic sulphate has accounted for 85-90% of the total non-sea salt sulphate (nss) sulphate during 
marine inflow conditions, indicating that the aerosol arrived from across the ocean [Savoie et al., 2002]. 
The nss sulphate values at Mace Head are several times greater than found at similar latitudes in the 
Southern Hemisphere, providing further evidence for an anthropogenic source (Figure 2.15) [Barrie et 
al., 2001]. The ICARTT campaigns provided information on pollution transport across the North 
Atlantic Ocean. Putaud et al. [2004] and Van Dingenen et al. [2004] provided an extended review of 
physical and chemical properties of PM in Europe. It is shown that the regional background in Europe is 
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7.0 ± 4.1 micrograms per cubic meter (µg/m3) for PM10 and 4.8 ± 2.4 µg/m3 for PM2.5 and that this 
background is not only due to natural sources but also to long-range transport of anthropogenic PM.  

Because forest fire emissions can be injected into the upper troposphere, forest fire aerosols are 
efficiently transported over long-distances. Aerosol layers transported from North America to Europe 
have been captured by lidars over Western and Central Europe [Forster et al., 2001; Wandinger et al., 
2004] and by surface measurement of BC concentrations. Analyses from EARLINET (European 
Aerosol Research Lidar Network) have shown that aerosol plumes from the anthropogenic sources in 
the North American boundary layer are generally not similarly intense [EARLINET, 2003]. Other 
examples of long-range transport of fire plumes include smoke originating from the Ural region 
travelling both northwest towards Scandinavia and eastward, across Canada, Scandinavia and eastern 
Europe before returning to Russia in a little more than 2 weeks [Damoah et al., 2004].  

 
Figure 2.15. Average sulphate levels measured at marine sites in the Northern and Southern 
hemispheres [Barrie et al., 2001]. 

Measurements also demonstrate that Asian industrial sources account for at least some of the 
baseline PM concentrations that are observed at the west coast of North America [Wilkening et al., 
2000]. Figure 2.16 illustrates an episode of elevated sub-micron aerosol scattering that corresponds to 
approximately 20 µg/m3 of PM10. The observed Hg0/CO ratio in this episode indicates that the detected 
aerosol was associated with Asian industrial sources, not mineral dust or biomass burning [Jaffe et al., 
2005b; Weiss-Penzias et al., 2007]. Using surface aerosol measurements from the Interagency 
Monitoring for Protected Visual Environments (IMPROVE) measurement sites together with a global 
chemical transport model, Heald et al. [2006] estimate the mean Asian sulphate enhancement in the 
northwestern U.S. in spring is 0.16 ± 0.08 μg/m3. This is much smaller than the annual average ambient 
air quality standard of 15 µg/m3 for PM2.5, but is higher than the estimated natural concentration of 0.09 
μg/m3 presently used as the objective for regulating visibility in U.S. wilderness areas. Interestingly, no 
such Asian enhancements are observed for nitrate or for organic carbon (OC) aerosol. A significant 
sulphate contribution from Asian emissions is supported by the recent study of van Donkelaar et al. 
[2008] as part of the INTEX-B campaign, which found that 56% of the measured sulphate between 500–
900 hectopascals over British Columbia is due to East Asian sources, and that there has been a 72–85% 
increase in the relative contribution of East Asian sulphate to the total burden in spring off the northwest 
coast of the U.S. since 1985. The ITCT-2K2 campaign observed additional evidence of trans-Pacific 
transport of anthropogenic Asian aerosols. Figure 2.17 illustrates PM measurements made during an 
aircraft profile through layered plumes marked by variations in CO concentrations. Transport modelling 
identified Asia as the emission source region. Another ITCT-2K2 flight observed particle size 
distributions and sulphate mass concentrations consistent with nearly pure sulphuric acid particle 
formation in the central North Pacific Ocean. The transport of gas-phase precursors from Asia and 
formation of particles in the mid-Pacific avoids the scavenging in cyclonic systems that remove PM 
from the atmosphere. Such mid-oceanic PM production suggests a larger potential for particle pollution 
to arrive during intercontinental transport events [Brock et al., 2004]. 
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 BC, defined as the light-absorbing fraction of carbonaceous aerosols, has complex climatic 
implications involving atmospheric heating and snow and ice surface warming. BC is difficult to sense 
remotely due to its small contribution to PM mass and aerosol optical depth. However its absorbing 
properties allow detection in the aerosol index product from Total Ozone Mapping Spectrometer 
(TOMS) [Torres et al., 2002] or more recently OMI [Torres et al., 2007]. Since these products are most 
sensitive to high-altitude absorbing aerosols, they are most useful for detecting biomass burning 
aerosols, but they are also somewhat sensitive to dust outflow. To some extent long-range transport of 
black carbon can also be detected using the absorption aerosol optical depth (AAOD) products from 
AERONET (AErosol RObotic NETwork) [Dubovik et al., 2002], with the caveat that this product is 
sensitive to absorbing dust as well as black carbon. Atlantic and Pacific outflow regions have relatively 
large AAOD (0.005 to 0.01), and high latitude sites such as Bonanza Creek Alaska and Tomsk, Russia 
have substantial AAOD (0.01 to 0.02) similar to levels characteristic of Europe.  

 

Figure 2.16. Concentrated trans-Pacific pollutant transport event observed at a mountaintop 
site near the west coast of North America. Observations of O3, aerosols, Hg and CO in a 
plume transported from Asia to the Mt. Bachelor Observatory in Oregon near the west coast of 
the U,S, in April 2004. The O3 vs. CO linear correlation gives an R2 value of 0.8 and a slope of 
0.22. [Reprinted from Figure 4 in Jaffe, D. A., et al. (2005b), Export of atmospheric mercury 
from Asia, Atmospheric Environment, 39(17): 3029-3038, with permission from Elsevier.] 

Better understanding of BC long-range transport requires improved quantification of the 
vertical distribution of BC. With the development of the SP2 instrument, high quality BC 
measurements with high vertical resolution are becoming available from aircraft campaigns [e.g. 
Schwarz et al., 2006]. Aircraft campaigns near Houston and Costa Rica [Schwarz et al., 2006; 
Schwarz et al., 2008] indicate that BC concentrations decrease with altitude by about two orders of 
magnitude between the boundary layer and the upper free troposphere, which implies efficient 
scavenging of BC during vertical transport in these regions. On the other hand, aircraft SP2 
measurements indicate substantial BC pollution in the Arctic, with increasing concentrations within 
the lower troposphere [Koch et al., 2009, Figures 9 and 10]. This view is broadly consistent with the 
AERONET and OMI perspective of relatively clean BC conditions in the remote lower latitudes of 
the northern hemisphere but substantial pollution at higher latitudes. The substantial pollution occurs 
in spite of decreasing BC trends in recent decades in North American surface measurements [Sharma 
et al., 2006] and snow [Hegg et al., 2009], but with snow concentrations in Eurasia 2-3 times those in 
North American snow. As future campaigns measure BC in the free troposphere, understanding of 
long-range BC transport should greatly improve. 
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Figure 2.17. Aerosol measurements marked by variation in CO concentrations. Vertical 
distributions of CO with aerosol particle number size distribution (left) and particle volume 
size distribution (right) in a plume of emissions transported from Asia. The measurements 
were made near the west coast of North America on 5 May 2002. [Adapted from Figure 2 in 
Brock, C. A., et al. (2004), Particle characteristics following cloud-modified transport from 
Asia to North America, Journal of Geophysical Research, 109(D23S26), 
doi:10.1029/2003JD004198.] 

2.3.4. Trends in Surface site Observations of Particulate Matter 
As discussed in previous sections, satellite remote sensing observations can clearly identify 

the intercontinental transport of PM. Complementary in-situ surface measurements have revealed that 
the long-range transport events could have significant impact on surface PM loading in receptor 
regions. Furthermore, the analysis of the long-term trend observed in the receptor regions provides an 
effective measure of the ―integrated effect‖ of the transport processes in larger spatial and temporal 
scales, e.g., the long-range transport influence on the receptor regional-scale PM loading and baseline 
concentrations. In this section, we discuss the long-term trends observed in receptor regions, by both 
in-situ and remote sensing measurements, under the influence of the transport from the East Asian, 
North American, and European sources. In addition, comparisons are made between the observed 
long-term trend and the emission trends in the source regions.  

Analyses of measurements of nitrate and anthropogenic nss sulphate concentrations on island 
sites in the Pacific and the Atlantic provide temporal trends, which show the effect of the long-range 
transport of these pollutants from the East Asian, European, and North American source regions. The 
trend in nss sulphate pollution is estimated by computing the "natural" nss-SO4

= based on the 
methanesulfonic acid concentrations and subtracting from the total nss sulphate. On Midway Island 
anthropogenic sulphate concentrations approximately doubled from 1981 to the mid-1990s [Prospero 
et al., 2003], a trend that closely matches the increase in SO2 emissions from China over that period 
[Streets et al., 2000]. Nitrate concentrations yield a similar trend over the same time period. The 
measurements made in Bermuda show coherent patterns in the annual mean concentrations of nss 
sulphate and nitrate (Figure 2.18). The nss sulphate decreased steadily from the start of the 
measurements until the mid-1990s, then stabilized and finally increased slightly through the 
remainder of the period. The emissions of SO2 from U.S. sources decreased substantially over this 
time period by an amount that roughly corresponds to the nss sulphate trend observed at Bermuda, yet 
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the timing of the decreases are markedly different; the U.S. SO2 emissions decreased sharply between 
1994 and 1995 when more stringent controls were mandated. In contrast, there is no substantial 
change in nitrate over this period, in agreement with the trend in NOx emissions, which shows only a 
very slight increase over the period. The substantial differences between the aerosol record and the 
emissions record demonstrate the challenges in attempting to monitor long-term trends at distant 
receptor sites. 

Aerosol sulphate and nitrate measurements have also been made continuously on Barbados 
since 1989. This record suggests that nitrate remained unchanged and that nss-SO4

= decreased by 
about 20%. Approximately half of the nitrate and nss sulphate at Barbados is attributable to 
anthropogenic sources [Savoie et al., 2002], predominately from European sources [Hamelin et al., 
1989]. If one assumes that the change in nss sulphate concentration is due to the transport of 
pollutants and if one considers that about half of the nss sulphate is natural (from DMS), then the 
actual decrease in sulphate pollution is roughly 40%, a change that is consistent with the sharp drop in 
European SO2 emissions over this time period [EMEP, 2004]. However the absence of a discernable 
change in Barbados nitrate concentrations is puzzling in light of the substantial reduction of European 
emissions of NOx, roughly 25% [EMEP, 2004]. 

 
Figure 2.18. Annual mean nss-sulphate and nitrate concentrations on Bermuda during on-
shore winds compared to eastern US SO2 (Tg S/y) and NOx emissions (Tg N/yr). Bars 
indicate the standard deviations of the monthly means from which the annual means are 
derived. [Based on data discussed in part in Savoie et al., 2002] 

The phenomenon of Arctic Haze occurs each winter and early spring due to rapid, meridional 
transport of anthropogenic PM from the northern mid-latitudes to the Arctic. The result is a dramatic 
increase in aerosol mass concentration. The haze is composed of a varying mixture of sulphate, 
organics, ammonium, nitrate, dust, and BC [e.g., Li and Barrie, 1993; Quinn et al., 2002]. It is also 
rich in distinct heavy metals, allowing for the identification of particular industrial sources [e.g., Rahn 
and McCaffrey, 1980]. Long term trends in the aerosol chemical composition and optical properties of 
Arctic Haze have been monitored at stations within the Arctic including Barrow, Alaska (71.3N, 
156.8W); Alert, Canada (82.5N, 62.3W); and Station Nord, Greenland (81.4N, 16.6W). 

The longest record of sulphate concentrations in the Arctic (1980 to present at Alert) reveals 
no change in sulphate concentration during the 1980s [Sirois and Barrie, 1999] followed by a decline 
beginning in 1991. A similar decline through the 1990s was observed in sulphate concentrations at 
Station Nord [Heidam et al., 2004] and in light scattering and absorption at Barrow [Bodhaine and 
Dutton, 1993]. A combined modelling and measurement analysis of sulphate concentrations at Station 
Nord was able to account for scatter in measured concentrations due to changing meteorology 
[Heidam et al., 2004]. With the meteorological variability removed, it was possible to attribute the 
decrease in concentration to a reduction in emissions. The model that was used estimates that more 
than 70% of the sulphur measured at Station Nord is emitted from the region making up the former 
Soviet Union. This result is supported by a 50% decrease in Russian sulphur emissions reported to 
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EMEP during the 1990s [Vestreng, 2003]. It is not clear from this analysis how reductions from 
Europe and North America influenced the sulphate concentrations at Station Nord. 

The decreasing trend in sulphate at Alert detected through the 1990s has continued into the 
present century [Quinn et al., 2007]. In contrast to sulphate, nitrate concentrations have increased 
during the Arctic Haze season at Alert over the period from 1981 to 2003. This increase may be a 
result of increasing vehicle usage in regions of the former Soviet Union. Quinn et al. [2009] compared 
ratios of tracer species measured at Barrow during the Arctic Haze season from 1976-1977 and 1997-
2008 to assess trends in Arctic Haze aerosol over this 30-year period and changes in source regions. 
The tracer species considered in the analysis included nss sulphate (derived from fossil fuel 
combustion), non-crustal (nc) vanadium (V) (derived from the combustion of heavy residual oil), and 
nc manganese (Mn) (derived from iron, steel, and ferro-alloy manufacturing, coal and oil combustion, 
and mining). Based on these two data sets, concentrations of nss sulphate and nc V have decreased at 
Barrow by about 60% over this 30 year period. Consistency in the ratios of nss sulphate to nc V and 
nc Mn to nc V between the two data sets indicates that, while emissions have decreased in source 
regions, the source regions themselves have remained the same over this time period. 

Satellites have been used to estimate temporal changes of aerosols through measurements of 
the AOD, which is a good indication of aerosol loading. Satellite AOD measurements provide the 
most comprehensive view of the atmospheric aerosols on global and regional scales. The available 
satellite AOD data products span nearly 2 decades. Mishchenko et al. [2007] analyzed the temporal 
variation in the globally averaged GACP (Global Aerosol Climatology Project) AOD data, which 
were derived from Advanced Very High Resolution Radiometer (AVHRR) radiance measurements. 
The GACP AOD showed a small increase, i.e., 0.03 or ~3% over 14 years, but a statistically 
significant decrease from 1991 to 2005. More recently, Thomas et al. [2010] found an increase in 
global AOD of 0.024/decade between 1995 and 2001. This study was based on the Global Retrieval 
of ATSR Cloud Parameters and Evaluation (GRAPE) dataset, which was derived from ATSR-2 
(Along Track Scanning Radiometer-2) observations. These authors attributed the global GRAPE 
increase to regional increases over the North Pacific, Tropical Pacific, and Tropical Indian oceans. It 
was also noted that there were significant differences between the GACP and GRAPE AOD data, 
approaching 0.5, and both datasets showed significantly larger shorter-term variations (uncorrelated) 
than the derived long-term trend. Li et al. [2009] presented a more extensive comparison of the 
satellite AOD data, including MISR, MODIS, and GACP (Figure 2.19). This comparison also showed 
a considerable difference between the AOD datasets in terms of absolute magnitude as well as short-
term and long-term temporal variations. Again, the shorter-term variations are much larger that the 
long-term changes. These authors concluded that most of the current satellite observation-based AOD 
are inadequate for analysis of long-term changes without significant improvement in 
calibration/validation, cloud screening, characterization of aerosol microphysical and optical 
properties, and surface reflectance.  

2.3.5. Implications for Surface Particulate Matter Air Quality in Receptor Regions 
 Particles transported over long distances can have a negative impact on urban air quality, although 
observed events are generally limited to dust transport. Figure 2.20 illustrates a particularly pronounced 
event. The dust was transported initially in the free troposphere, and then brought to the surface through a 
combination of processes, which differed from region to region. Subsequent mixing with local pollutants 
led to PM2.5 concentrations exceeding the new U.S. daily standard of 35 μg/m3. During this specific case, 
the dust passed above the Pacific Northwest (i.e. Seattle, Washington) and had greater impact at the 
surface in the Rocky Mountains and eastern United States. Even in events when the percent increase in 
concentration is small, it may be sufficient to cause local exceedances of air quality standards.  
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Figure 2.19. Comparison of global mean AOD over ocean derived from different satellite 
input data and retrieval algorithms for an overlapping period since 2000. Different retrieval 
algorithms assume different aerosol models. [Reprinted from Figure 1 in Li, Z., et al. (2009), 
Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term 
trend: A review and perspective, Annales Geophysicae, 27: 2755-2770.] 

 
Figure 2.20. Contributions from three sources to surface PM2.5 in three U.S. cities (Salt Lake 
City, Utah; Atlanta, Georgia and Seattle, Washington) during an April 2001 episode of Asian 
dust transported to North America. [Adapted from Jaffe, D., et al. [2003], The 2001 Asian 
Dust Events: Transport and Impact on Surface Aerosol Concentrations in the U.S., EOS: 
Transactions of the American Geophysical Union, 84(46): 501-507.] 

Until recently, satellite observational tools were unable to provide robust source 
apportionments. The added capability of CALIPSO may significantly improve quantitative estimates 
of PM flux and the impact of transported particles on air quality at ground level over broad regions. 
However, even the enhanced observational capabilities are insufficient to provide robust quantitative 
air quality assessments alone. To provide an answer, improved observational capabilities will need to 
be combined with modelling in a synergistic approach. 

2.3.6 Summary, Remaining Uncertainties and Future Needs 
FINDING: In situ measurements have established the importance of intercontinental transport 
of PM from dust, forest fires, and anthropogenic sources. In some case studies of in situ 
measurements have illuminated secondary aerosol formation far from the sources of 
transported precursors.  
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FINDING: Ground-based lidar networks and mountain top measurement sites in Europe, 
North America and Asia provide large continuous data sets that characterize the frequency and 
intensity of aerosol transport events and the meteorological conditions responsible for them. 
They also provide important information on aerosol particle properties. Operational procedures 
for dust outbreak monitoring in near real time are implemented at several mountain sites in 
Europe.  

RECOMMENDATION: Discussion is required regarding the optimum observation strategy for 
in situ and surface remote measurements for further characterizing intercontinental transport 
of aerosols. A particular focus should be on measurements to quantify the sources and 
properties of the organic and black carbon components of transported PM, which are currently 
poorly understood. The mechanisms for the transport and removal of PM also need to be 
addressed.  

FINDING: Over the last few years, satellites have begun to provide quantitative information on 
intercontinental aerosol transport, including estimates of the amount of dust and pollution 
transported, the altitude of transport and, in some cases, aerosol particle properties.  

FINDING: Observed trends of PM (e.g. SO4) in downwind locations are closely related to the 
emission trends in the source regions with the impact of long-range transport more evident in 
remote regions less affected by local sources such as the Arctic. Satellite measurements are 
currently not precise and accurate enough for monitoring the long-term changes.  

RECOMMENDATION: Analysis of available datasets should be supported to better quantify 
aerosol particle properties and the PM fluxes (pollution, dust, biomass-burning emissions) 
between continents in the Northern Hemisphere and to/from regions to the north (Arctic) and 
south (e.g. Africa). Surface in situ and remote measurements as well as satellite observations can 
provide important contributions.  

FINDING: Long-range transport of aerosols can have air quality and climatic implications, at 
northern latitudes especially in the outflow from the Asian continent and in the Arctic region. 
Observational studies alone have not well quantified either the impact on local air quality or the 
climatic implications.  

RECOMMENDATION: To inform air quality control decisions, better methodologies are 
required to extract the long-range transport contribution from measured overall PM 
concentrations. Characterizing long-range transport of black carbon is particularly important 
for understanding climatic implications.  

2.4. Observational Evidence for Attribution of Source Regions  
Enhancements in trace gas and aerosol concentrations associated with long-range transport of 

pollution from sources upstream may persist for several days in the free troposphere, where residence 
times are enhanced. During transport, atmospheric mixing acts to dilute these enhancements, as air 
masses of different histories are mixed together creating a spectrum of chemical signatures 
downstream from the source region. This provides a challenge in attributing source regions of long-
range transport events using observations from research aircraft and surface stations, since discrete 
chemical signatures associated with source regions may be completely masked by mixing. 
Nevertheless, observed relationships among chemical tracers can be used to detect the influence of 
upstream source regions on the composition of a given region of the atmosphere. Knowledge of 
source relationships between tracers and their atmospheric processing, and observations of tracers of 
different atmospheric lifetimes, can be used to yield estimates of the influence of remote upstream 
sources on atmospheric composition. Moreover, methods for combining in situ or satellite tracer 
observations with backward modelling techniques provide powerful constraints on the pathways of 
long-range pollution transport, our understanding of chemical processing during individual transport 
events and attribution of contributions from different source regions and types. Improvements in the 
quality of analyzed wind fields from meteorological services has also enabled more robust attribution 
of contributing source regions to a given receptor region downstream.  
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2.4.1. Meteorologically-based source attribution studies  
On the intercontinental or hemispheric scale, meteorology-based analyses for accurately 

determining the emission source regions of gases or PM at a particular receptor require the use of 
transport models. These modelling techniques currently fall into two categories: 1) backward 
simulations with Lagrangian particle dispersion models (LPDM); and 2) adjoints to chemical transport 
models (CTM). These methods are designed for exploring emission regions (both known and unknown) 
and transport pathways backwards in time from an in situ trace gas or PM measurements. They are also 
complementary to the more traditional approach of using a model to emit tracers from known emission 
sources and seeing if they advect forwards in time to the receptor location.  

LPDM backward simulations initialized from a receptor (measurement) location is the now the 
most commonly used method of meteorological-based source attribution studies. Simpler back 
trajectories are still used but they are limited in the quantitative information they can provide on the 
contribution from a source region, and do not perform as well in regions of strong shear or convection. 
LPDMs calculate the transport pathways of air masses (often referred to as ―particles‖ because they are 
assumed to be infinitesimally small) following the winds resolved in atmospheric analyses or forecasts. 
The models also include a stochastic step to represent the effects of unresolved turbulence and 
convection [Stohl et al., 2002]. The parameterised ―random walk‖ shuffles particles, each weighted with 
the same tracer mass, so that their sum within a volume represents the effects of advection and diffusive 
mixing on passive tracer concentration [Legras et al., 2003]. At present, LPDMs have not yet been 
developed to include chemical or aerosol processing or detailed descriptions of deposition processes 
where non-linearities in chemical transformation may be important.  

For tracers, such as CO where a linear loss can be included, LPDM simulations lead to a 
relatively accurate representation of transport which takes into account the shear, turbulence and 
convection encountered by a volume of air as it travels from source to receptor. The dynamics of the 
atmosphere also conspire to allow accurate simulation of tracer structures formed by advection on 
scales an order of magnitude finer than the resolution of the wind field [Methven and Hoskins, 1999] 
allowing simulations at high resolution (< 0.5 degrees). LPDM backward simulations have become 
known as retroplumes [Stohl et al., 2003] which can be calculated in various forms and resolutions by 
models such as FLEXPART [Stohl et al., 2005], STILT [Gerbig et al., 2003; Lin et al., 2003] or 
HYSPLIT (http://www.arl.noaa.gov/HYSPLIT_info.php). The method involves releasing a multitude 
(often tens of thousands) of trajectory particles in the receptor volume and tracking their location for 
several days backwards in time using high resolution (1° x 1° or finer) global wind fields. The sum of 
the residence time of all particles in the boundary layer establishes the ―footprint‖ of the retroplume 
and indicates the surface emission region influencing the measured trace gas or PM. Multiplying the 
footprint residence time by co-located surface emission rates estimates the contribution of that source 
region to the trace gas quantity measured at the receptor. One of the first examples of the use of the 
retroplume technique for source attribution of a long-range transport event, demonstrated that aircraft-
based measurements of enhanced CO and NOy in the free troposphere above Europe during 
November, 2001, originated in the boundary layer of North America and travelled to Europe via a 
warm conveyor belt [Stohl et al., 2003]. Approximately half of the CO in the plume came from 
various anthropogenic sources in the eastern U.S., with the main contribution coming from the New 
York region. The technique has also been used to show how elevated O3 and CO above the California 
coast originated in a broad region of south and east Asia with subsequent transport to California via 
two successive warm conveyor belts [Cooper et al., 2004]. Retroplumes have also shown how Asian 
pollution can be rapidly transported eastwards in the upper troposphere to Europe in as little as 6 days 
[Stohl et al., 2007b]. Application to aircraft and surface measurements in the Arctic has recently 
revealed the pathways of biomass burning emissions from Europe [Stohl et al., 2007a] and central 
Asia [Warneke et al., 2007] to Spitzbergen and northern Alaska, respectively. A recent development 
in this technique is to calculate retroplume climatologies for thousands of in situ measurements at a 
given location over many years. The purpose is to identify the typical transport patterns and source 
regions associated with a subset of measurements such as enhanced or depleted trace gas or PM 
events [Cooper, 2010; Hirdman et al., 2010].  
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Meteorologically-based source attribution studies can also be conducted with CTM adjoints. 
While adjoint capabilities have been around slightly longer than the retroplume technique, they have not 
been as widely applied to intercontinental- or hemispheric-scale studies, although they are gaining in 
popularity. The adjoint works in the same spatial and temporal resolution as the CTM to which it is 
attached and provides similar output to retroplumes, identifying the source region of an air mass at a 
particular receptor as well as its transport pathway. On the hemispheric scale, adjoint studies have a 
coarser horizontal resolution than the retroplume studies (roughly 2° × 2.5° vs. 1° x 1°). The advantage 
of adjoints over retroplumes is that they can be used to not only determine the source region of a trace 
gas or PM measurement, but can also identify the chemical and physical mechanisms that modify the 
trace gas or PM during transport, provided these mechanisms are handled by the CTM.  

Application of adjoints to pollution plume studies began with the development of the adjoint 
to the HANK CTM which demonstrated that the techniques could identify plume transport from Asia 
to Mauna Loa Observatory, Hawaii [Vukicevic and Hess, 2000]. Adjoints have been recently applied 
to explore processes that influence intercontinental transport to North America. Henze et al. [2009] 
used the GEOS-Chem adjoint to determine the source regions of inorganic PM2.5 precursor emissions 
for monitoring sites throughout the U.S. and found that intercontinental influences are small, though 
transboundary influences within North America are significant, with strong influence from SOx 
emissions in Mexico. Zhang et al. [2009] determined that Mount Bachelor Observatory in the 
northwestern U.S. experiences distinct Asian O3 pollution episodes, with most of the O3 production 
occurring over East Asia, adding to a diffuse background production distributed over the extra-
tropical northern hemisphere (Figure 2.21). The adjoint also showed that transpacific pollution plumes 
transported in the free troposphere are diluted by a factor of 3 when entrained into the boundary layer, 
explaining why these plumes are undetectable in U.S. surface air. 

 
Figure 2.21. Measured O3 mixing ratios of 55-60 ppbv at Mt. Bachelor Observatory, Oregon 
on 1 May, 2006, were determined as having a 50% contribution from Asian sources based on 
the global GEOS-CHEM model. The model adjoint showed that much of the O3 production 
over the past 60 days occurred within Asia (left panel shows where O3 production occurred) 
roughly 10 days earlier (right panel shows when O3 production occurred in 4 different regions 
over the previous 60 days), although production also occurred as the Asian pollution plume 
crossed the North Pacific Ocean and descended into the mid-troposphere over North America. 
[Reprinted from Figure 2a in Zhang, L., et al. (2009), Intercontinental source attribution of 
ozone pollution at western U.S. sites using an adjoint method, Geophysical Research Letters, 
36(L11810).] 

FINDING: High resolution particle dispersion models provide powerful techniques for the 
identification of pollutant source regions. 

FINDING: Recent developments in adjoint modelling techniques provide useful insights into the 
sources and the chemical transformation processes that influence trace gases and aerosols 
during long-range transport. 

RECOMMENDATION: There is a need for further application of particle dispersion models to 
the analysis of long-time series of ozone and PM, with the goal of determining the impact of 
source regions on long-term trends and inter-annual variability. 
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RECOMMENDATION: Development of LPDMs to include full treatments of chemical and 
aerosol processing and wet/dry deposition as a complement to Eulerian models is needed.  

2.4.2. Source attribution based on trace gas correlations and ratios  
Relationships among atmospheric chemical tracers are powerful observation-based tools for 

assessing source contributions and probing chemical and physical processing in air masses 
undergoing long-range transport. For example, the ratio O3: CO, used as an estimate of the excess 
in O3 and CO above background in different plumes, has been used to identify long-range transport 
events and estimate photochemical O3 enhancement in polluted air masses downstream of the 
continents [Bertschi et al., 2004; Parrish et al., 1993]. NOy: CO has been used as a measure of 
export efficiencies of anthropogenic emissions from continental regions [Li et al., 2004; Stohl et al., 
2002; Val Martin et al., 2006] and correlations between O3 and PAN in aged air can be used to infer 
photochemical influence from sources upstream [Parrish et al., 1992]. These trace gas relationships 
can also be useful in distinguishing plumes from different sources (e.g. boreal forest fires versus 
anthropogenic pollution), however, care has to be taken when using O3:CO to infer O3 production. 
Secondary production of CO from non-methane volatile organic compound oxidation and O3 
deposition or photochemical O3 loss during transport may modify observed slopes [Chin et al., 1994], 
and photochemical destruction of CO may increase the O3:CO slope [Real et al., 2010]. Tracer 
variability within an air mass and sharp tracer gradients at its edges may also complicate the use of 
ratios, where observations are non-representative of the plume average or are affected by background 
air at the point of sampling. Since plumes do not remain isolated, in reality their chemical signatures 
are influenced by the history of different backgrounds and source signatures with which they have 
mixed during transport. Price et al. [2004] showed O3: CO slopes in plumes transported in the 
upper troposphere were likely influenced by mixing with higher ozone concentrations. In addition, the 
choice of criteria used to define O3: CO above background can result in differences in slope values 
[Pfister et al., 2006] and inference of plume source and photochemical activity. On a larger scale, 
correlations between satellite observations of tropospheric O3 and CO over the Pacific have been used 
to identify and track events of trans-Pacific photochemical O3 transport [Zhang et al., 2008].  

The increasingly routine observation of a range of non-methane hydrocarbons (NMHC) 
during airborne missions and at free tropospheric surface sites is proving valuable for identifying and 
examining long-range transport events in the troposphere. Many simple alkane and alkene species 
have atmospheric lifetimes useful for probing processing on timescales for intercontinental transport 
(2-5 days). The robust source relationships among different NMHCs, their range of typical 
atmospheric lifetimes, and their common chief sink (the OH radical) have been used to infer 
photochemical ageing and OH concentrations from NMHC ratio observations during long-range 
transport events [Parrish et al., 1992; Price et al., 2004]. Atmospheric mixing destroys the idealised 
evolution of tracer ratios expected through only photochemical processing of an air mass, which can 
inhibit their use in source attribution or inference of plume processing. Nevertheless, results from the 
ICARTT pseudo-Lagrangian experiment (see 2.4.4) showed that on spatial and temporal scales of 
intercontinental transport, well-defined NMHC ‗fingerprints‘ can be retained in air masses over 
several days in the free troposphere. These NMHC fingerprints allowed successful pseudo-Lagrangian 
links to be identified. In addition, they provided a powerful independent validation of atmospheric 
transport model derived links among observation platforms. Lewis et al. [2007] demonstrated distinct 
NMHC signatures of large enhancements in acetylene relative to acetaldehyde and acetone in biomass 
burning plumes intercepted near the Azores compared with North American anthropogenic plumes, 
enabling robust separation of these two source types. The use of NMHC ratios in conjunction with 
O3 estimates can also be used to investigate relationships between O3 photochemical production and 
plume age [Helmig et al., 2008]. Using statistical inference techniques applied to observed NMHC 
ratios in the ICARTT pseudo-Lagrangian air masses, Arnold et al. [2007] estimated mean OH 
concentration, dilution rates and background air mass NMHC composition, characteristic of air 
masses of anthropogenic and biomass burning origin in the summertime North Atlantic troposphere 
using robust relationships among NMHCs with a wide range of lifetimes, such that their OH oxidation 
during the 1-3 days between export from North America and aircraft interception produced an 
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appreciable change in NMHC ratios. Combination of NMHC ratios with Lagrangian particle 
dispersion model simulations has also allowed quantification of the different contribution of 
photochemistry, emissions and mixing [Honrath et al., 2008; Parrish et al., 2007]. 

Nevertheless, recent studies have indicated that other oxidants such as halogens (chlorine, 
bromine radicals) or nitrate may play an important role in the formation (or destruction) of 
tropospheric O3. For example, chemical measurements in coastal regions of the Gulf of Mexico during 
the summer 2006 TexAQS study for the first time confirmed that nitryl chloride is a key atmospheric 
species that couples the nitrogen and halogen chemistries of the marine boundary layer [Osthoff et al., 
2008]. The use of inert tracers (e.g. perfluorocarbons), which have no chemical sinks, has also been 
used recently as part of the DLR POLARCAT-GRACE campaign to follow air masses over a few 
days providing important constraints on atmospheric mixing among different air masses (Hans 
Schlager, Deutsches Zentrum fuer Luft - und Raumfahrt (DLR) Institut fuer Physik der Atmosphaere, 
Wessling, Germany, personal communication, 2010).  

FINDING: Increasingly routine observations of concentrations of ozone and aerosol precursors 
as well as reservoir species such as PAN, onboard research aircraft and at observatory sites 
have allowed fingerprinting of different sources and quantification of timescales for plume 
processing by photochemistry and mixing, and coupled with atmospheric transport models 
these observations can now allow the detailed source history of a given air mass to be untangled. 

RECOMMENDATION: Development of in situ techniques for measuring trace gas and aerosol 
species at higher temporal resolution, and with improved detection limits (e.g. <1pptv for 
NMHCs), would improve the detection of LRT events. Improved knowledge about NMHC 
emissions to better constrain estimates of chemical processing based on NMHC ratios is also 
required.  

RECOMMENDATION: Assess the role of oxidants other than OH in pollutant processing, such 
as halogens and nitrate and the role of heterogeneous processes in polluted and non-polluted 
regions. 

RECOMMENDATION: Further development of techniques based on the release and re-
sampling of inert tracers to allow quantification of mixing processes during long-range 
transport. 

2.4.3. Aerosol source attribution based on use of trace elements and isotopes  
Although there now exist instrumental capabilities to measure the physical and chemical 

properties of pollutant aerosols in great detail, there are still relatively few reliable ―tracers‖ that are 
uniquely source-specific; largely because aerosol source signatures (nature or anthropogenic) are 
rarely unique and because there is a large degree of atmospheric mixing during hemispheric-scale 
transport. In the case of natural particulate matter such as mineral dust, a combination of 
mineralogical and geochemical/isotopic properties can be used to identify the source regions(s). Over 
the past decade, a vast number of studies have documented the global dispersion of desert dust from 
East Asian deserts, in particular from northwestern China and southern Mongolia. Dust from these 
regions has been tracked as far as Alaska, the Yukon, Greenland and the European Alps [Bory et al., 
2003; Grousset et al., 2003; Yasunari and Yamazaki, 2009; Zdanowicz et al., 2006]. Many of these 
studies make use of source-specific mineralogical abundances, elemental ratios, or the stable isotope 
ratios of strontium (Sr), eodymium (Nd) and lead (Pb) in the clay-size fraction of dust aerosols to 
identify their source(s). This has been facilitated by concerted efforts to map the compositional 
characteristics of different dust sources in eastern Asia [e.g. Yang et al., 2009; Zheng et al., 2009]. 
Trace element abundances and ratios also allow for trends in atmospheric mineral dust loading to be 
investigated in ice cores. Kaspari et al. [2009] recently developed a proxy record of dust aerosols from 
a Mt Everest ice core. The record suggests that Asian dust outbreaks have become more frequent 
since the 1800s, but provides no conclusive evidence of an anthropogenic impact on these trends. 
However, these trends are at odds with results from another core from the western Tibetan Plateau 
[Yang et al., 2006]. Meanwhile, a record from Mt Wrangell in Alaska suggests a recent increase in the 
trans-Pacific transport of Asian dust in the springtime [Yasunari et al., 2007].  
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For short-lived anthropogenic aerosols (e.g., trace metals, sulphate, and BC) the challenge of 
identifying distant sources is greater. This is because the compositional properties of these aerosols 
(e.g., elemental or isotopic abundances) are either not sufficiently characterized, or too variable, or 
both, to be unequivocally attributed to specific sources or source regions. Typically, compositional 
properties of pollutant aerosols are used to apportion total concentrations among various source types 
(e.g., fuel combustion vs. industrial refining) using some type of factor analysis, rather than to identify 
specific regional point sources [e.g. Viana et al., 2008] although there are exceptions.  

Lead (Pb) isotope ratios have proven particularly useful to trace back long-range airborne 
metal pollution to various source regions, because the stable Pb isotope composition of fumes from 
fuel combustion, or from some industrial processes, can carry a source-specific signature inherited 
from the ore from which the Pb was extracted [Komarek et al., 2008]. However, some pollution 
sources, such as base metal smelters, may have time-varying emission signatures [e.g. Simonetti et al., 
2004]. More commonly, the Pb isotope ratios of aerosols are compared with the air mass signature of 
various possible source regions, and the relative contributions of these regions are estimated using a 
mass balance model such as the U.S. EPA‘s IsoSource [e.g. Sturges et al., 1993]. The essential 
requirement for this method is that the source signatures be well characterized. Fortunately, research 
efforts in recent decades have allowed the Pb isotope signatures of regional airsheds in both 
hemispheres to be defined [Bollhofer and Rosman, 2000; 2001; 2002]. Lead isotope measurements in 
aerosols and in snow and ice from Greenland, Arctic Canada and alpine regions have provided 
evidence of changing levels and sources of atmospheric Pb to the remote atmosphere over past 
decades and centuries [e.g. Mercier, 2000; Sherrell et al., 2000; Shotyk et al., 2005; Veysseyre et al., 
2001]. These records show declining trace metal pollution after the 1980s in the North Atlantic sector 
and in western Europe, but a Pb isotope record from corals in the western Pacific testifies to a 
growing export of atmospheric Pb from China, which may have contributed up to 64 % of the Pb 
increase in the last two decades of the 20th century. This is in agreement with Pb isotope data from 
China [Mukai et al., 2001] and Pb deposition trends recorded in snow on the opposite side of the 
North Pacific [Osterberg et al., 2008]. A time series of aerosol Pb isotope data at a pair of sites on the 
west coast of California demonstrates how Pb isotope analysis has been used to resolve trans-Pacific 
versus local Pb sources [Ewing et al., 2010]. While the trans-Pacific Pb generally co-occurs with 
peaks in sample mass and silicon (Si) content due to trans-Pacific dust events, high Pb concentrations 
relative to sample mass and Si content are taken as evidence that the trans-Pacific Pb is primarily 
anthropogenic in origin (see Figure 2.22).  

The source identification of anthropogenic sulphate aerosols is more challenging because 
there are also multiple natural sources that contribute to the observed sulphate burden in the 
atmosphere. However, advances in the stable isotope characterization of sulphur (34S) in aerosols and 
precipitation now allow for the relative contributions of these source types to be estimated. As with Pb 
isotopes, the method requires that the 34S of possible reservoirs and sources (e.g., industrial SO2 
gases, marine biogenic sulphate) be determined with sufficient precision to discriminate among these 
sources. Also, sulphur isotope ratios in the atmosphere can be modified during heterogeneous phase 
reactions, in particular oxidation pathways, and the effects of these reactions must be quantified 
[Leung et al., 2001]. In pioneering studies, Nriagu et al. [1991] and Norman et al. [1999] used sulphur 
isotope measurements to estimate the relative contributions of natural (primarily marine) and non-
marine, primarily anthropogenic sources (including smelter emissions) to sulphate aerosols collected 
at Alert, Arctic Canada. Since then, several other studies have applied the method to characterize the 
sources of atmospheric sulphate in Europe [Novak et al., 2001], North America [Wadleigh et al., 
2001], China [Mukai et al., 2001] and over the Atlantic Ocean [Patris et al., 2000; Wadleigh, 2004]. 
Measurements of 34S have also been applied to Greenland ice cores in order to document the 
changing burden of anthropogenic sulphate in the polar atmosphere since pre-industrial times [Patris 
et al., 2002]. As coal combustion remains one of the dominant man-made sources of SO2 in the 
atmosphere, and as China emerges as the dominant emitter [Lu et al., 2010; Osterberg et al., 2008], 
efforts are now being directed at refining the sulphur isotope characterization of Chinese coal sources. 
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Figure 2.22. 208Pb/207Pb vs. 206Pb/207Pb in airborne particles at sites in California (Chabot 
Observatory, Mt. Tamalpais and central California surface sites), in San Francisco Bay waters, 
and from a variety of Chinese sources. Linear regression lines are shown in blue for 
wintertime Chabot samples, light brown for Chinese cities and loess, and dotted green for Mt. 
Tamalpais. [Reprinted from Figure 1 in Ewing, S. A., et al. (2010), Pb Isotopes as an Indicator 
of the Asian Contribution to Particulate Air Pollution in Urban California, Environmental 
Science & Technology, 44(23): 8911-8916. Copyright 2010 American Chemical Society.] 

Similarly, new analytical developments, in particular the measurement of carbon isotope 
ratios in organic aerosols, are now allowing for BC in air or deposited in snow to be apportioned 
among source types such as biomass burning, biofuel combustion, fossil fuel combustion, etc. [Hegg 
et al., 2009]. The microcrystalline structure and trace element composition of soot may also reveal the 
type of emission process and help distinguish between, for example, BC emitted by industrial plants 
from that emitted by diesel engines [VanderWal et al., 2010]. But the objective of fingerprinting 
specific regional sources of BC in long-range aerosols remains largely elusive. 

With or without diagnostic tracers, attribution of aerosols to specific source regions can also 
be attempted by comparing observed temporal trends at receptor sites with emission trends from 
potential source regions. Ice cores from polar and alpine regions, which contain records of 
atmospheric aerosol deposition extending back over decades to millennia, have proven useful in this 
respect. While these records cannot, as yet, be directly interpreted in terms of aerosol loadings, the 
deposition histories developed from ice cores provide solid evidence of the intercontinental transport 
of anthropogenic aerosols from specific continental regions. In particular, the sources of atmospheric 
sulphate and/or nitrate aerosols have been investigated in Greenland [Bigler et al., 2002], the 
Norwegian and Canadian Arctic [Goto-Azuma and Koerner, 2001; Kekonen et al., 2002; Moore et al., 
2006], the European Alps [Preunkert et al., 2001; Preunkert et al., 2003] and western North America 
[Yalcin and Wake, 2001]. As well, the provenance of atmospheric Pb in the Arctic atmosphere has 
been investigated using cores from Greenland and the Canadian North [McConnell et al., 2002; 
Osterberg et al., 2008; Shotyk et al., 2005] (Figure 2.23). More recently, McConnell et al. [2007] 
developed a detailed record of BC deposition from central Greenland, which points to a predominance 
of North American sources prior to the mid-20th century, and the growing influence of east Asian 
sources since 1951. 
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Figure 2.23. Ice-core records of atmospheric lead (Pb) pollution in central Greenland (altitude 
~3000 m) and Mt. Logan (altitude ~5500 m), Yukon Territory, Canada. Black lines are high-
resolution measurements of Pb from Greenland [reprinted from Figure 1a in McConnell, J. R., et 
al. (2002), A 250-year high-resolution record of Pb flux and crustal enrichment in central 
Greenland, Geophysical Research Letters, 29(23): 2130-2133] and Mt. Logan [reprinted from 
Figure 3a in Osterberg, E., et al. (2008), Ice core record of rising lead pollution in the North 
Pacific atmosphere, Geophysical Research Letters, 35(L05810)]. Coloured symbols in upper 
panel are spot measurements from earlier studies. Also shown are reported industrial sulphur gas 
emissions from North America and Europe and from East Asia [from Osterberg et al., 2008].  

FINDING: Measurements of trace elements and isotopic ratios can provide useful fingerprints 
for different source types and emission regions influencing aerosol composition.  

FINDING: Analysis of long-term aerosol and trace element records provides information about 
inter-annual variability in source attribution at a particular downwind measurement site as well 
as insights into how emissions may have changed in the past. 

RECOMMENDATION: Further development is needed of isotope and geochemical 
fingerprinting techniques for the identification of different source types and, in the case of 
stable isotopes information about chemical processes occurring during transport. Proxy records 
of aerosol deposition (e.g. from ice cores) also provide useful tests for models over multi-decadal 
timescales. 

2.4.4. Plume processing during long-range transport based on analysis of Lagrangian data 
and implications for global modelling of long-range pollutant transport  

An ideal framework for assessing the processes influencing the evolution of pollutant 
concentrations during long-range transport away from source regions is to sample the same air mass 
several times at successively greater downwind distances. Such a Lagrangian approach assumes that an 
air mass can be tracked with sufficient accuracy during transport. Since this is, in reality, difficult to 
achieve, such attempts are often called pseudo-Lagrangian experiments. They were first attempted over 
rather short spatial (few hundred kilometres) and temporal scales (1-2 days) as part of, for example, the 
first and second Aerosol Characterization Experiments (ACE) [e.g. Raes et al., 2000] or downwind of 
biomass burning regions over the southern Atlantic during TRACE-A [Mauzerall et al., 1998].  

Since the mid-2000s, as noted in Section 2.4.1, the ability to accurately forecast tracer (e.g., 
CO) distributions several days downwind from source regions has improved. This led to the planning 
and execution of the first inter-continental pseudo-Lagrangian experiment (IGAC Lagrangian 2K4), 
which took place as part of the ICARTT field campaign, to investigate long-range transport of 
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pollutants between North America and Europe. It was the first time that dedicated flights were 
planned to sample the same air masses on inter-continental scales with multiple aircraft based in 
North America, the Azores and Europe [Fehsenfeld et al., 2006].  

Several Lagrangian matches were identified post-campaign covering a variety of different 
meteorological situations [Methven et al., 2006]. One case is shown for illustration in Figure 2.24 
when anthropogenic pollution was transported across the North Atlantic. Continuous, but slow, 
entrainment from the polluted low level outflow helped to maintain elevated pollutant levels (e.g., 
sulphate aerosol) in the marine boundary layer below. In an another case of pollution outflow, Real et 
al. [2008] used a photochemical model initialized with upwind data, and compared to downwind data 
allowing a detailed evaluation of the processes influencing O3 levels during long-range transport. 
Initially O3 and oxidized nitrogen concentrations were very high but hypothesized washout of HNO3 
combined with O3 destruction was needed to explain the lower concentrations observed off the west 
coast of Ireland. Nevertheless, observed O3 concentrations were still higher than average 
concentrations observed during summer at Mace Head, Ireland. This case also highlighted that high 
O3 and water concentrations, observed close to the source regions, can lead to significant CO 
destruction making the use of CO as a tracer less than ideal in this case. In another case of long-range 
transport of an Alaskan forest fire plume, the trade-off between photochemical O3 production from 
PAN decomposition and destruction due to increasing water vapour during descent into Europe were 
both found to be important as well as mixing with upper tropospheric air masses [Real et al., 2007]. In 
both cases, it was difficult to determine an actual import of pollutants into the European PBL although 
in the latter case, the biomass burning plume was also observed in the lower troposphere in the south 
of France [Ravetta et al., 2007, see Section 2.2.1].  

 
Figure 2.24. Trajectories 6 days backwards and forwards from the UK FAAM BAe146 flight 
track on 19 July 2004 (blue) showing links with upwind and downwind flights. Matching 
flights were: NASA DC8 15 July (dark green), NOAA WP-3D 15 July (light green), DLR 
Falcon 22 July (orange) and FAAM BAe146 25 July (red), numbered in time order. [Adapted 
from Figure 2b in Methven, J., et al. (2006), Establishing Lagrangian connections between 
observations within air masses crossing the Atlantic during the International Consortium for 
Atmospheric Research on Transport and Transformation, Journal of Geophysical Research, 
111(D23S62)] (case 1). 

Analysis of the ICARTT forest fire case led to the application of parcel dispersion modelling 
techniques previously employed in the stratosphere to determine tropospheric mixing rates [Pisso et 
al., 2009]. These approaches, based on the FLEXPART model and including a stochastic 
representation of mixing, were used to demonstrate the need for high spatial resolution calculations to 
reproduce observed plumes, many thousand kms downwind from source regions. Pisso et al. [2009] 
also estimated that global models need to be run with at least 40 km horizontal and 500 meter vertical 
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resolution in order to simulate long-range transport of pollutant plumes. Rastigejev et al. [2010] also 
showed that numerical diffusion, inherent in global Eulerian models, is dominating plume dilution 
even at increasing grid resolution. They suggest that adaptive gridding or embedded Lagrangian 
treatments of pollutant plumes are needed. Inclusion of photochemistry in the calculations of Pisso et 
al. [2009], representing resolutions of a few km, showed the importance of multiple air mass origins 
in governing measured concentrations of O3 and CO along downwind flights [Real et al., 2010]. An 
example is shown in Figure 2.25. Runs of the model reproduced observed correlation patterns and 
demonstrated the importance of chemical destruction as well as production in producing observed 
trace gas correlations. Results from a global model (MOCAGE) were unable to reproduce these 
correlations because the plume was too smeared out. Real et al.[2010] also estimated errors associated 
with resolution on net O3 production showing that significant errors (up to 20-50%) can occur at 
plume edges compared to low resolution simulations which smear out gradients. Wild and Prather 
[2001] also quantified the impact of horizontal resolution on photochemical O3 production, finding 
errors ranging from 27% at 5.5 degrees to 5% at 1.1 degrees. However, as already suggested errors 
might become non-linear below 1 degree.  

 
Figure 2.25. O3:CO correlations along Lagrangian plume match segment of a flight on 22 July 
2004 by German DLR Falcon – measurements are shown as red diamonds; simulated results 
using a high resolution parcel model (ZooM-CiTTy) with chemistry are shown as blue 
rectangles; model runs without chemistry are shown as pink stars. [Adapted from Figure 10 in 
Real, E., et al. (2010), Toward a novel high-resolution modeling approach for the study of 
chemical evolution of pollutant plumes during long-range transport, Journal of Geophysical 
Research 115(D12302).] 

FINDING: Pseudo-Lagrangian experiments provide unique and very useful constraints on the 
processing of long-range transport plumes by allowing the observation of air mass evolution in a 
flow-relative framework. Subsequent data analysis revealed detailed information regarding the 
photochemical evolution of anthropogenic and biomass burning plumes during long-range 
transport. 

RECOMMENDATION: Lagrangian experiments should be used to rigorously assess the 
performance of global models, and the impact of resolution on long-range transport simulations 
requires further investigation. The comparison of model NMHC ratios with those observed 
would also provide constraints on models’ abilities to represent the source contributions to long-
range transport plumes, retain plume structure and representation of their dilution to the 
background. 

FINDING: Developments in high-resolution Lagrangian modelling have allowed estimates of 
the resolutions needed to capture long-range transport of pollutant plumes in global models, 
which are currently too diffusive leading to the artificial dilution of pollutant plumes. The 
resolution issue is important for modelling pollutant events as well as modelling background 
pollutant levels where errors can occur if modelled lifetimes are incorrect.  
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RECOMMENDATION: Improved horizontal and vertical resolution in global models together 
with the further development of plume in-grid techniques for pollutant plume transport is 
needed.  

RECOMMENDATION: A better understanding of air mass entrainment from the free 
troposphere into the planetary boundary layer is required through dedicated field experiments, 
to improve estimates of the impacts of long-range ozone transport on regional air quality in 
receptor regions.  

2.5. Research Needs  
2.5.1. Surface Site Needs  

A comprehensive ground-based global monitoring system is required for many purposes, 
including data provision for comparison with global models of chemistry and transport, and detection 
of trends in emissions of primary pollutants and their secondary products produced by atmospheric 
processing. The only truly global network for fulfilling this requirement is contained in the World 
Meteorological Organization (WMO) Global Atmospheric Watch (GAW) program which organizes 
the measurements of a large range of chemical species at sites distributed globally 
(http://www.wmo.int/pages/prog/arep/gaw/gaw_home_en.html). The data are stored at the World 
Data Centre for Greenhouse Gases (WDCGG). Figure 2.26 shows the locations of the sites for 
measurement of reactive and greenhouse gases. This global network is complemented by national and 
transnational networks that cover regions e.g. EMEP in Europe, the Clean Air Status and Trends 
Network (CASTNET) in the US, and the Canadian Air and Precipitation Monitoring Network 
(CAPMoN). For the detection of episodes of long-range intercontinental transport of gaseous 
pollutants however, only a few sites are capable of producing useful information. For aerosols it is a 
different matter and many sites in remote locations reveal transport events. As discussed in Section 
2.2.2, mountaintop sites are particularly useful for detecting long-range transport events arriving on 
the western coasts of North America and Europe and even Europe to Asia transport.  

 
Figure 2.26. Network of surface-based remote observatories organized through the World 
Meteorological Organization‘s Global Atmospheric Watch (GAW) Program. 

The WMO GAW program measures gaseous species, including CO, O3, selected volatile 
organic compounds (VOCs), NOx and NOy compounds, and SO2. A new global network for 
measuring VOCs has just been created within the GAW program and a network for global 
measurements of NOx and NOy compounds is planned. Unfortunately, no global network exists for 
SO2 although this species, and all the others mentioned, are measured by EMEP and CASTNET. 
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These regional networks were set up to follow trends in emissions of primary pollutants and to 
establish the regional background of secondary pollutants which can be strongly influenced by long-
range transport from region to region. While some networks exist in southeast Asia, such as in Taiwan 
and Japan, there is a need to further develop long-term measurement networks in this important 
emission region, and especially in China and other parts of southeast Asia.  

RECOMMENDATION: Continue current ground-based networks into the future with 
additions made to the range of constituents measured and additional sites in optimal locations 
for characterization of long-range transport and long-term changes in pollutant concentrations. 
Such networks require continued maintenance with proper attention paid to calibration and 
data quality issues. 

2.5.2. Vertical Profiling Needs  
Instrumented surface sites provide continuous in-situ measurements of trace gases and 

aerosols that are valuable for identifying annual trends as well as seasonal and diurnal variability. 
However, with the exception of a few high mountain top sites, they are only representative of the 
lowest few hundred meters of the atmosphere and need to be supplemented with vertical profiling 
through the full troposphere to allow, in particular better quantification of the export and import of 
pollutants to and from emission regions. This requires frequent vertical profiling at key locations on 
the upwind and downwind edges of the continents and especially in regions susceptible to pollution 
import (see Chapter 1) where long-range transport of pollutants may lead to exceedence of pollution 
thresholds for air quality and crops. The three methods currently used for the vertical profiling of 
O3and PM are described below.  

Ozonesondes  

These balloon-borne instruments are routinely launched year-round at approximately 35 sites 
in the northern hemisphere, typically one to three times per week, providing measurements at 100 m 
resolution through the troposphere. However very few sites are ideally located for determining the 
baseline O3impacting a continent (Figure 2.27). While ozonesonde datasets have provided information 
about long-term changes in O3 concentrations [e.g. Oltmans et al., 2006], difficulties arise associated 
with changes in techniques over time and calibration, which make interpretation of these records 
problematic [Schnadt Poberaj et al., 2009; Smit et al., 2007]. A recent study reported increasing free 
tropospheric O3 over western North America during springtime, 1995-2008, using large data sets 
composed primarily of MOZAIC data (see below). This study found that weekly ozonesonde profiles 
at a particular location were not frequent enough to detect increasing O3 trends in the free troposphere 
[Cooper, 2010]. Detection of the trend would require ozonesonde profiles on a daily basis. It can be 
noted that the annual cost of operating a hypothetical northern hemisphere ozonesonde network of 60 
sites with daily profiles is on the order of 20 million US$.  

Ozone and aerosol lidars 

Lidars are ground-based lasers that measure O3 mixing ratios and PM loadings with vertical 
resolution better than 1 km through much of the troposphere, with some having the capability to reach 
the tropopause. These instruments cannot however measure through clouds. Figure 2.27 shows the 
locations of most of the tropospheric ozone and aerosol lidars in the northern hemisphere. There are 
very few O3 lidars, all in North America, Europe and New Zealand, while the number of aerosol lidars 
is at least 70 with a large proportion in East Asia. As noted in Sections 2.2 and 2.3, ground-based 
lidars contribute very valuable information about long-range transport of O3 and PM. 

Commercial aircraft 

Since 1994 the European MOZAIC program (http://mozaic.aero.obs-mip.fr) has measured O3, 
water vapour, CO and NOy from up to five commercial Airbus aircraft. To date the program has 
measured over 60,000 vertical profiles, mostly in Europe, the eastern U.S. and Japan. The most 
frequently sampled cities are shown in Figure 2.27. The data have been used for a wide variety of 
studies and, as shown in the recent study by Cooper et al. [2010], can be used for the analysis of O3 
trends in the free troposphere. Some limitations of the program are that measurements in the  
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Figure 2.27. Current locations in the Northern Hemisphere with frequent ozone and PM 
profiling of the troposphere by: aerosol lidars (green +) [Bosenberg and Hoff, 2008], ozone 
lidars (yellow x) and weekly ozonesondes (white/red dots) (www.woudc.org). Also shown are 
the cities frequently sampled by MOZAIC/IAGOS commercial aircraft (magenta x) during 
1995-2010.  

lowermost troposphere are contaminated by local airport effects, data are collected from a finite 
number of cities, flight routes are often biased to certain times of day, and scientists have no control 
over where profiles occur. The MOZAIC program is being replaced by the new IAGOS program 
(http://www.iagos.org/) from mid-2010 with an increased number of measurements of trace gases (O3, 
CO, CO2, NOy, NOx, and water), PM and cloud particles. The goal is an initial fleet of 10-20 long-
range commercial aircraft operated by a range of international carriers providing cost-effective 
profiling (approximately $500 per profile) around the world. The data will be available in near real 
time to weather services and Earth observation service centres. In addition, the CARIBIC (Civil 
Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container) 
[Brenninkmeijer et al., 2007] program that began in 1997 has joined IAGOS. The latest phase of 
CARIBIC uses one commercial A340 Airbus conducting approximately 40 flights per year between 
Frankfurt and destinations around the world. While the CARIBIC aircraft flies less frequently than its 
MOZAIC counterparts, it makes a wider range of measurements, which includes O3 and PM (particle 
number, size distribution and composition). 

 Routine monitoring from dedicated aircraft could also augment future vertical profiling of O3 
and PM. For example, the NOAA Earth System Research Laboratory contracts privately owned 
aircraft to make routine vertical measurements of carbon cycle gases from sixteen locations across 
North America. A similar program could be created to measure O3 and PM. The recent development 
of Un-manned Aerial Vehicles (UAVs) that can carry significant payloads (up to 900 kg), fly up to 30 
hours and reach altitudes near 20km (see e.g., http://uas.noaa.gov/ and 
http://www.nasa.gov/centers/dryden/aircraft/GlobalHawk/), could eventually provide the ideal 
monitoring for quantifying long-range transport of O3 and PM in the northern hemisphere. Such 
aircraft could be flown several times per week on routine survey missions along the western coast of a 
receptor region. However, the cost of such a program would be large, and the use of UAVs in the 
capacity of routine air quality monitoring has not yet been fully developed.  

FINDING: Lidars, ozonesondes and commercial aircraft provide frequent profiling of O3 and 
PM at many locations across the northern hemisphere. However, very few of the profiling 
locations are ideally situated to quantify baseline O3 and PM flowing into the continents.  

RECOMMENDATION: Additional profile measurements are much needed to provide 
information on the vertical distribution of pollutant layers Commercial aircraft measurements 
should be expanded, especially within the continents (North America, Asia, Europe), and with 
additional measurements of trace gases and aerosols. Additional ground-based lidars should be 
sited to yield the best quantification of baseline O3 and PM impacting downwind continents.  

RECOMMENDATION: Development is needed of the capability to use unmanned aerial 
vehicles for measuring pollutant profiles in regions of pollutant import over receptor regions.  

http://uas.noaa.gov/
http://www.nasa.gov/centers/dryden/aircraft/GlobalHawk/
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RECOMMENDATION: Maintenance of the long-term record from ozonesondes is required.  

RECOMMENDATION: Added emphasis should be placed upon measurements designed to 
quantify the import of pollutants into the planetary boundary layer of receptor continents. 

2.5.3. Satellite Data Needs  
Satellite remote sensing provides a valuable data source to assess the impacts of long-range 

transport and derive pollutant emissions. Efforts in a few key areas offer high potential to further 
enhance this capability. One such area is data access where excellent examples exist of publicly 
available satellite data, often in near real-time. Making all scientific satellite data available for free in 
an easily accessible and timely manner would increase the value of the measurements to the wider 
scientific community (e.g. through tools like Giovanni (http://disc.sci.gsfc.nasa.gov/giovanni), and 
TEMIS (www.temis.nl)). This should include regular updates from data providers following product 
improvements together with documentation detailing, in particular, the quality of the data and 
methodology for its scientific use.  

Further quantification of error estimates and improvement in satellite retrievals are also 
needed. Great progress has been made in developing retrieval algorithms that yield quantitative results 
that can be compared with models and other measurements in a consistent manner. Nonetheless, 
continued effort is needed to achieve a clear understanding of the accuracy and precision of these 
measurements. In addition to an assessment and quantification of the main error sources in the 
retrieval processes under different characteristic conditions (background, urban pollution, biomass 
burning, etc.) and measurement scenarios (dependent on meteorology, surface type, time of day etc.) 
systematic comparisons against independent measurements are necessary. A challenge is that surface 
and aircraft measurements available for retrieval evaluation are often at different spatial and temporal 
scales than the satellite measurements, and have different inherent measurements sensitivities to the 
atmospheric quantity of interest, which can lead to ambiguous comparisons. Therefore, although the 
development of systematic vertical profiling (Section 2.5.2) would clearly help, dedicated validation 
activities are needed that span a satellite pixel (typically ~15km for recent instruments such as 
IASI/METOP), and include profile information, for a range of pollutants, seasons and atmospheric 
conditions. This evaluation effort must persist over the entire mission duration to establish confidence 
in trend detection in the presence of possible instrumentation drifts over time. 

Continued investment in retrieval development could contribute to significant advances in 
assessment of long-range transport. For example, nascent tropospheric HNO3 retrievals [Wespes et al., 
2009] could provide insight into O3 sources. Emerging developments in retrievals of ammonia [Beer, 
2008; Clarisse et al., 2009] and SO2 [Lee et al., 2009] offer a constraint on PM sources. The 
development of multispectral retrieval techniques and better instrumental spectral resolution have the 
potential to improve vertical profile information and allow discrimination of the lowermost 
troposphere from the free troposphere for species such as CO [Deeter et al., 2009] and O3 [Liu et al., 
2010; Worden et al., 2007]. In addition to these passive observations, innovative approaches using 
active remote sensing (the CALIOP lidar in space onboard CALIPSO since 2006 and the future 
ATLID onboard the EarthCare mission) provide valuable complementary information on the altitude 
and shape of the transported plumes.  

Finally, most current satellite missions able to make measurements of processes relevant for 
long-range transport are maturing could soon end. For example, with the exception of GOME-2 and 
IASI-METOP, the instruments in Table 2.1 are all operating beyond their planned lifetimes. Planning 
for the next generation of satellites is beginning, but progress is slow due to limited resources, and the 
current wealth of data is unlikely to be maintained over the next few years as the current instruments 
expire. Proposals for future missions are recognizing the complementary nature of measurements of 
trace gases and PM from both low Earth orbit (LEO), which provides global coverage, and 
geostationary orbit (GEO), which allows for continental-scale measurements at relatively high 
spatiotemporal resolution. Indeed, a tantalizing possibility for the future would be the international 
implementation of a constellation of LEO and GEO platforms providing detailed coverage of most of 
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the globe. This would permit comprehensive investigation of pollution events, transport and 
atmospheric composition processes at different altitudes and across spatial and temporal scales.  

FINDING: Current satellite datasets for trace gases and aerosols provide critical spatial and 
temporal information for improved understanding of transport pathways and emission 
strengths. 

FINDING: Many current satellites measuring atmospheric composition are reaching the end of 
their missions so future capabilities may be reduced. 

RECOMMENDATION: Continued efforts are required to improve retrieval accuracy, to 
improve vertical resolution, and to develop modelling tools to interpret the observations.  

RECOMMENDATION: The development and launch of geostationary satellites measuring 
trace gas and aerosols is needed provide much improved temporal coverage over key emission 
regions of the northern hemisphere. 

RECOMMENDATION: High priority should be given to developing future low Earth orbit 
missions, accelerating the implementation timetable, and fostering international cooperation on 
shared use of available data and coordinated future mission planning. 

2.5.4. Intensive Campaign Needs  
Intensive field campaigns provide abundant opportunities to advance our understanding of the 

hemispheric transport of air pollution. Each campaign generally deploys a wide array of newly 
developed, state-of-the-art instruments in a coordinated manner on several mobile (aircraft, ship) 
platforms and at surface sites. These instruments include in-situ and remote-sensing measurements. 
Strategies to answer open research questions guide the planning of such studies, so the results 
invariably advance our understanding on multiple fronts.  

Issues relevant to long-range pollutant transport that can be addressed by intensive campaigns 
using instrumented aircraft are manifold. Emission sources can be characterized and their emissions 
quantified for primary pollutants, greenhouse gases, and precursors of O3 and PM. The chemical 
transformation of emitted species can be followed through the formation of secondary species (both 
gas-phase and aerosol), and on to the ultimate destruction and deposition processes. Atmospheric 
transport mechanisms can be identified and their relative importance determined. This includes not 
only transport of pollutants away from emission regions but also their long-range transport to receptor 
regions and import into the boundary from the free troposphere. This latter aspect has yet to be 
investigated in detail in many regions.  

In addition to addressing specific issues, intensive field campaigns provide extensive and 
detailed data sets that serve as benchmarks for testing chemical-transport model simulations. In 
particular, Lagrangian experiments making multiple samplings of the same air mass during long-range 
transport between continents can provide important information on chemical and aerosol processing 
as well as deposition processes and mixing rates in the troposphere. 

Although far less expensive than a single satellite instrument, an intensive campaign does 
challenge the resources that are typically available for field measurements at a national level. Hence, 
the larger campaigns are beyond the capabilities of a single agency or even nation, and therefore must 
be planned wisely and coordinated at an international level.  

FINDING: Intensive field campaigns provide one of our most important means of advancing 
our understanding of atmospheric chemistry and transport in general, and the long-range 
transport of pollutants in particular. Lagrangian experiments are particularly useful in this 
regard. 

RECOMMENDATION: Intensive field campaigns should be conducted frequently focusing on 
key issues where large uncertainties remain in our understanding of long-range transport of 
pollutants between continents such as the import of pollutants into the boundary layer over 
downwind receptor regions. Given the extensive resources required, it is essential to carefully 
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plan such experiments, ideally within international frameworks that can mobilize a large 
scientific community to address a particular issue.  

RECOMMENDATION: Continued development of high quality, accurate measurements of 
trace gases and aerosols, in conjunction with quality control assessments, for use in intensive 
field campaigns is needed. The development of methods based on, for example, the release of 
inert tracers and fingerprinting techniques (using in-situ measurements of isotopes, VOCs), 
would allow significant advances in our ability to follow pollution plumes, and in source 
identification and verification of emission inventories.  

2.5.5. Model evaluation against observations  
The results presented in this chapter have focused on observational evidence for long-range 

transport of pollutants. Data analyses using multiple parcel models or trace gas correlations/ratios 
were also presented as a means of identifying source regions. Global CTMs are the tools used to 
estimate the impact of different emission regions on downwind regions (see Chapter 4). Here we 
comment on their usefulness for this purpose and the methodologies employed for evaluating their 
performance in terms of ability to simulate pollutant long-range transport. Comparison with 
observations is generally used as a means of evaluating model performance. Previous studies 
analyzing multi-model ensembles [e.g. Dentener et al., 2005; Fiore et al., 2009] largely focused on 
comparison with surface data. For example, Fiore et al. [2009] attempted to assess model skill by 
comparing with surface O3 observations binned over different sub-regions. While certain biases were 
evident, it was difficult to attribute causes, in part due the large differences in, for example modelled 
VOC emissions, which varied by a factor of 10 across models. Other studies have compared models 
with monthly mean ozonesonde data [e.g., Stevenson et al., 2006]. Such comparisons do not test 
model ability to simulate observed variability including particular episodes. Accurately reproducing 
such data and attributing sources remains a challenge for current global models. Additional 
development and application of computationally efficient algorithms (such as adjoint approaches) are 
valuable to calculate model sensitivities to multiple parameters, such as long-range transport or 
emission sources.  

Detailed comparison of specific global models with data collected as part of intensive field 
campaigns does allow advances in our understanding of processes influencing the model results and 
discrepancies with the data. For example, Hudman et al. [2008] used INTEX-NA data to conclude 
that EPA CO emissions are too high by 60%. Modelling associated with analysis of Lagrangian data 
also provides important information about the processes governing pollutant concentrations during 
particular long-range transport events (see Section 2.4.4). Results showed that plume signatures are 
diluted too rapidly in current global models due to too coarse resolution [Pisso et al., 2009; Real et 
al., 2010] and diffusive advection schemes [Rastigejev et al., 2010] confirming the need to run global 
Eulerian models at higher resolution or to include in-grid plume treatments.  

Many datasets exist which can be further exploited to improve model capabilities in terms of 
long-range pollutant transport. In particular, this includes satellite data and vertical profile data from, 
for example, the MOZAIC program. The ability of models to reproduce the full spectrum of measured 
concentrations (e.g. Figure 2.1), measured long-term trends (e.g. Figures 2.7 and 2.8), and the 
relationships among measured species needs to be assessed. The continued development of a 
dedicated data portal to house or link to relevant datasets would be beneficial in this regard. 

FINDING: Current datasets (surface, lidar, ship, aircraft, sonde and satellite) provide 
information about monthly, seasonal and inter-annual variability of certain trace gases and 
aerosol species, which can be used to assess model performance.  

FINDING: Multi-species analysis of field campaign data often provides new insights into 
chemical and aerosol processing leading to improvements in their representation in CTMs. 

RECOMMENDATION: Increased use of vertical profile data is needed, especially data 
collected at high temporal resolution (daily) and satellite data for the evaluation of global model 
performance and for quantifying the impact of emissions from one region on downwind regions. 
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RECOMMENDATION: Combined use of campaign and routine monitoring data to assess and 
improve model treatment of pollutant import into the lower troposphere over downwind 
receptor regions is needed. 
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